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Chapter 6
Entropy: A Measure of Disorder

Entropy and the Clausius Inequality 

The second law of thermodynamics leads to the definition of a new property
called entropy, a quantitative measure of microscopic disorder for a system.
Entropy is a measure of energy that is no longer available to perform useful
work within the current environment.  To obtain the working definition of
entropy and, thus, the second law, let's derive the Clausius inequality. 

Consider a heat reservoir giving up heat to a reversible heat engine, which
in turn gives up heat to a piston-cylinder device as shown below.

We apply the first law on an incremental basis to the combined system
composed of the heat engine and the system.
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where Ec is the energy of the combined system.  Let Wc be the work done by
the combined system.  Then the first law becomes
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If we assume that the engine is totally reversible, then 
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The total net work done by the combined system becomes 

δ δW T Q
T

dEc R c= −

Now the total work done is found by taking the cyclic integral of the 
incremental work.

W T Q
T

dEc R c= −z zδ

If the system, as well as the heat engine, is required to undergo a cycle, then 

dEcz = 0

and the total net work becomes
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W T Q
Tc R= z δ

If Wc is positive, we have a cyclic device exchanging energy with a single
heat reservoir and producing an equivalent amount of work; thus, the
Kelvin-Planck statement of the second law is violated.  But Wc can be zero
(no work done) or negative (work is done on the combined system) and not
violate the Kelvin-Planck statement of the second law.  Therefore, since TR
> 0 (absolute temperature), we conclude 

W T Q
Tc R= ≤z δ 0

or

δQ
Tz ≤ 0

Here Q is the net heat added to the system, Qnet.

δQ
T

netz ≤ 0

This equation is called the Clausius inequality.  The equality holds for the
reversible process and the inequality holds for the irreversible process.

Example 6-1

For a particular power plant, the heat added and rejected both occur at
constant temperature and no other processes experience any heat transfer.
The heat is added in the amount of 3150 kJ at 440oC and is rejected in the
amount of 1950 kJ at 20oC.  Is the Clausius inequality satisfied and is the
cycle reversible or irreversible?
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Calculate the net work, cycle efficiency, and Carnot efficiency based on TH
and TL for this cycle.
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The Clausius inequality is satisfied.  Since the inequality is less than zero,
the cycle has at least one irreversible process and the cycle is irreversible.
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Example 6-2

For a particular power plant, the heat added and rejected both occur at
constant temperature; no other processes experience any heat transfer.  The
heat is added in the amount of 3150 kJ at 440oC and is rejected in the
amount of 1294.46 kJ at 20oC.  Is the Clausius inequality satisfied and is the
cycle reversible or irreversible?
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The Clausius inequality is satisfied.  Since the cyclic integral is equal to
zero, the cycle is made of reversible processes.  What cycle can this be?

Calculate the net work and cycle efficiency for this cycle.
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Definition of Entropy 

Let’s take another look at the quantity

δQ
T

netz ≤ 0

If no irreversibilities occur within the system as well as the reversible cyclic
device, then the cycle undergone by the combined system will be internally
reversible. As such, it can be reversed. In the reversed cycle case, all the
quantities will have the same magnitude but the opposite sign. Therefore,
the work WC, which could not be a positive quantity in the regular case,
cannot be a negative quantity in the reversed case. Then it follows that 
WC,int rev = 0 since it cannot be a positive or negative quantity, and therefore 

δQ
T

netF
HG
I
KJ =z

int rev

0

for internally reversible cycles. Thus we conclude that the equality in the
Clausius inequality holds for totally or just internally reversible cycles and
the inequality for the irreversible ones.

To develop a relation for the definition of entropy, let us examine this last
equation more closely. Here we have a quantity whose cyclic integral is
zero. Let us think for a moment what kind of quantities can have this
characteristic. We know that the cyclic integral of work is not zero. (It is a
good thing that it is not. Otherwise, heat engines that work on a cycle such
as steam power plants would produce zero net work.) Neither is the cyclic
integral of heat.

Now consider the volume occupied by a gas in a piston-cylinder device
undergoing a cycle, as shown below. 
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When the piston returns to its initial position at the end of a cycle, the
volume of the gas also returns to its initial value. Thus the net change in
volume during a cycle is zero. This is also expressed as

dVb gz = 0

We see that the cyclic integral of a property is zero.  A quantity whose
cyclic integral is zero depends only on the state and not on the process path;
thus it is a property.  Therefore the quantity (δQnet/T)int rev must be a
property.
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In-class Example

Consider the cycle shown below composed of two reversible processes A
and B.  Apply the Clausius inequality for this cycle.  What do you conclude
about these two integrals?
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Apply the Clausius inequality for the cycle made of two internally
reversible processes:
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You should find: 
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Since the quantity (δQnet/T)int rev is independent of the path and must be a
property, we call this property the entropy S. 
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A cycle composed of two reversible processes.
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The entropy change occurring during a process is related to the heat transfer
and the temperature of the system. The entropy is given the symbol S
(kJ/K), and the specific entropy is s (kJ/kg⋅K).

The entropy change during a reversible process, sometimes called an
internally reversible process, is defined as 

dS Q
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S S Q
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δ

δ
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Consider  the cycle 1-A-2-B-1, shown below, where process A  is arbitrary
that is, it can be either reversible or irreversible, and process B is internally
reversible.
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A cycle composed of reversible and irreversible processes.
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The integral along the internally reversible path, process B, is the entropy
change S1 –S2.  Therefore, 
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In general the entropy change during a process is defined as

dS Q
T

net≥
δ

where = holds for the internally reversible process
                  > holds for the irreversible process 

Consider the effect of heat transfer on entropy for the internally reversible
case.  
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This last result shows why we have kept the subscript net on the heat
transfer Q.  It is important for you to recognize that Q has a sign depending
on the direction of heat transfer.  The net subscript is to remind us that Q is
positive when added to a system and negative when leaving a system.
Thus, the entropy change of the system will have the same sign as the heat
transfer in a reversible process.

From the above, we see that for a reversible, adiabatic process 

dS
S S

=
=

0

2 1

The reversible, adiabatic process is called an isentropic process.

Entropy change is caused by heat transfer and irreversibilities.  Heat transfer
to a system increases the entropy; heat transfer from a system decreases it.
The effect of irreversibilities is always to increase the entropy.  In fact, a
process in which the heat transfer is out of the system may be so irreversible
that the actual entropy change is positive.  Friction is one source of
irreversibilities in a system.

The entropy change during a process is obtained by integrating the dS
equation over the process: 

∆S S S Q
T

kJ
Ksys

net= − ≥ F
HG
I
KJz2 1 1

2 δ

Here, the inequality is to remind us that the entropy change of a system
during an irreversible process is always greater than δQ T/

1

2z , called the
entropy transfer.  That is, some entropy is generated or created during an
irreversible process, and this generation is due entirely to the presence of
irreversibilities.  The entropy generated during a process is called entropy
generation and is denoted as Sgen. 

We can remove the inequality by noting the following
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∆S S S Q
T

S kJ
Ksys

net
gen= − = + F
HG
I
KJz2 1 1

2 δ

Sgen is always a positive quantity or zero.  Its value depends upon the
process and thus it is not a property. Sgen is zero for an internally reversible
process.

The integral δQ T/
1

2z  is performed by applying the first law to the process to
obtain the heat transfer as a function of the temperature.  The integration is
not easy to perform, in general.

Definition of Second Law of Thermodynamics

Now consider an isolated system composed of several subsystems
exchanging energy among themselves.  Since the isolated system has no
energy transfer across its system boundary, the heat transfer across the
system boundary is zero.  

Applying the definition of entropy to the isolated system 
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∆S Q
Tisolated

net≥ z δ1

2

The total entropy change for the isolated system is

0isolatedS∆ ≥

This equation is the working definition of the second law of
thermodynamics.  The second law, known as the principle of increase of
entropy, is stated as

       The total entropy change of an isolated system during a process
always increases or, in the limiting case of a reversible process,
remains constant.

Now consider a general system exchanging mass as well as energy with its
surroundings. 

0, adiabatic
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S S S Sgen total sys surr= = + ≥∑∆ ∆ ∆ 0

where = holds for the totally reversible process
                   > holds for the irreversible process 

Thus, the entropy generated or the total entropy change (sometimes called
the entropy change of the universe or net entropy change) due to the process
of this isolated system is positive (for actual processes) or zero (for
reversible processes).  The total entropy change for a process is the amount
of entropy generated during that process (Sgen), and it is equal to the sum of
the entropy changes of the system and the surroundings.  The entropy
changes of the important system (closed system or control volume) and its
surroundings do not both have to be positive.  The entropy for a given
system (important or surroundings) may decrease during a process, but the
sum of the entropy changes of the system and its surroundings for an
isolated system can never decrease.

Entropy change is caused by heat transfer and irreversibilities.  Heat transfer
to a system increases the entropy, and heat transfer from a system decreases
it.  The effect of irreversibilities is always to increase the entropy.

The increase in entropy principle can be summarized as follows: 

S S sgen Total=
>
=
<

R
S|
T|

∆
0
0
0

Irreversible processes
Reversible processe
Impossible processes
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Some Remarks about Entropy

1. Processes can occur in a certain direction only, not in just any direction,
such that Sgen ≥  0.

2. Entropy is a nonconserved property, and there is no such thing as the
conservation of entropy principle.  The entropy of the universe is
continuously increasing.

3. The performance of engineering systems is degraded by the presence of
irreversibilities, and entropy generation is a measure of the magnitudes
of the irreversibilities present during that process.

Heat Transfer as the Area under a T-S Curve 

For the reversible process, the equation for dS implies that 

dS Q
T

Q TdS

net

net

=

=

δ

δ

or the incremental heat transfer in a process is the product of the
temperature and the differential of the entropy, the differential area under
the process curve plotted on the T-S diagram. 

Q TdSnet = z12



Chapter 6-16

In the above figure, the heat transfer in an internally reversible process is
shown as the area under the process curve plotted on the T-S diagram.

Isothermal, Reversible Process

For an isothermal, reversible process, the temperature is constant and the
integral to find the entropy change is readily performed.  If the system has a
constant temperature, T0, the entropy change becomes 

∆S S S Q
T

Q
T

net net

o

= − = =z2 1 1

2 δ

For a process occurring over a varying temperature, the entropy change
must be found by integration over the process.
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Adiabatic, Reversible (Isentropic) Process

For an adiabatic process, one in which there is no heat transfer, the entropy
change is

∆

∆

S S S Q
T

S S S

net= − ≥

= − ≥

z2 1 1

2

2 1 0

δ

If the process is adiabatic and reversible, the equality holds and the entropy
change is

∆S S S
S S

= − =
=

2 1

2 1

0

or on a per unit mass basis

s S
m

s s

=

=2 1

The adiabatic, reversible process is a constant entropy process and is
called isentropic.  As will be shown later for an ideal gas, the adiabatic,
reversible process is the same as the polytropic process where the polytropic
exponent n = k =  Cp/Cv.

0, adiabatic



Chapter 6-18

The principle of increase of entropy for a closed system exchanging heat
with its surroundings at a constant temperature Tsurr is found by using the
equation for the entropy generated for an isolated system.

S S S S
S S S
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Q Q Q Qnet surr net sys out sys out sys, , , ,( )= − = − − =0

Qout, sys

A general closed system (a
cup of coffee) exchanging
heat with its surroundings

Surroundings
Tsurr

System
Boundary
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Effect of Heat Transfer on Entropy 

Let's apply the second law to the following situation.  Consider the transfer
of heat from a heat reservoir at temperature T to a heat reservoir at
temperature T - ∆T > 0 where ∆T > 0, as shown below.

The second law for the isolated system composed of the two heat reservoirs
is

S S S S
S S S S
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In general, if the heat reservoirs are internally reversible
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finite temperature
difference
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Now as ∆T → 0, Sgen → 0 and the process becomes totally reversible.
Therefore, for reversible heat transfer ∆T must be small.  As ∆T gets large,
Sgen increases and the process becomes irreversible.
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Example 6-3

Find the total entropy change, or entropy generation, for the transfer of
1000 kJ of heat energy from a heat reservoir at 1000 K to a heat reservoir at
500 K.  

The second law for the isolated system is

S S
Q
T

Q
T T

kJ
K

kJ
K

kJ
K

kJ
K

gen Total= =
−

+
+

−

=
−

+

= − +

=

∆
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1000
1000

1000
500

1 2

1

( )

What happens when the low-temperature reservoir is at 750 K?

The effect of decreasing the ∆T for heat transfer is to reduce the entropy
generation or total entropy change of the universe due to the isolated system
and the irreversibilities associated with the heat transfer process.

Q=1000 kJ

HR
at
T=1000 K

HR
at
T-∆T = 500K 0        1          2   S, kJ/K

1000 K

500 K

T Areas
= 1000 kJ
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Third Law of Thermodynamics

The third law of thermodynamics states that the entropy of a pure
crystalline substance at absolute zero temperature is zero.  This law
provides an absolute reference point for the determination of entropy.  The
entropy determined relative to this point is called absolute entropy.

Entropy as a Property

Entropy is a property, and it can be expressed in terms of more familiar
properties (P,v,T) through the Tds relations.  These relations come from the
analysis of a reversible closed system that does boundary work and has heat
added.  Writing the first law for the closed system in differential form on a
per unit mass basis

δ δ

δ

δ

Q W dU

Q T dS

W P dV

TdS P dV dU

int rev int rev, out

int rev

int rev, out

=−

=

=

− =

On a unit mass basis we obtain the first Tds equation, or Gibbs equation, as

Tds du Pdv= +

δWint rev, out
δQint rev

System used to find expressions for ds
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Recall that the enthalpy is related to the internal energy by h = u + Pv.
Using this relation in the above equation, the second Tds equation is 

T ds dh v dP= −

These last two relations have many uses in thermodynamics and serve as
the starting point in developing entropy-change relations for processes.  The
successful use of Tds relations depends on the availability of property
relations.  Such relations do not exist in an easily used form for a general
pure substance but are available for incompressible substances (liquids,
solids) and ideal gases.  So, for the general pure substance, such as water
and the refrigerants, we must resort to property tables to find values of
entropy and entropy changes.

The temperature-entropy and enthalpy-entropy diagrams for water are
shown below. 
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Shown above are the temperature-entropy and enthalpy-entropy diagrams
for water.  The h-s diagram, called the Mollier diagram, is a useful aid in
solving steam power plant problems. 
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Example 6-4

Find the entropy and/or temperature of steam at the following states:

P T Region s kJ/(kg K)
5 MPa 120oC

1 MPa 50oC

1.8 MPa 400oC

40 kPa Quality, x = 0.9

40 kPa 7.1794

(Answers are on the last page of the Chapter 6 Study Guide.)
 
Example 6-5

Determine the entropy change of water contained in a closed system as it
changes phase from saturated liquid to saturated vapor when the pressure is
0.1 MPa and constant.  Why is the entropy change positive for this process? 

System:  The water contained in the system (a piston-cylinder device)

Property Relation:  Steam tables

Process and Process Diagram:  Constant pressure (sketch the process
relative to the saturation lines)

Steam

s

T
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Conservation Principles:

Using the definition of entropy change, the entropy change of the water per
mass is

∆s s s s s s
kJ

kg K

g f fg= − = − =

=
⋅

2 1

6 0568.

The entropy change is positive because: (Heat is added to the water.)

Example 6-6
  
Steam at 1 MPa, 600oC, expands in a turbine to 0.01 MPa.  If the process is
isentropic, find the final temperature, the final enthalpy of the steam, and
the turbine work.

System: The control volume formed by the turbine
  

Property Relation:  Steam tables

Process and Process Diagram:  Isentropic (sketch the process relative to
the saturation lines on the T-s diagram)

Control surface

1

2

Wout

s

T
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Conservation Principles: 
Assume:  steady-state, steady-flow, one entrance, one exit, neglect KE and

PE

Conservation of mass:

m m m1 2= =

First Law or conservation of energy: 

The process is isentropic and thus adiabatic and reversible; therefore Q = 0.
The conservation of energy becomes

1 1 2 2

in out

out

E E

m h m h W

=

= +

Since the mass flow rates in and out are equal, solve for the work done per
unit mass 

( )

E E
W m h m h

m h h

w W
m

h h

in out

out

out

=

= −
= −

= = −

1 1 2 2

1 2

1 2

Now, let’s go to the steam tables to find the h’s.
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P MPa
T C

h kJ
kg

s kJ
kg K

o
1

1

1

1

1
600

3697 9

8 0290

=

=

UVW
=

=
⋅

R
S
||

T
||

.

.

The process is isentropic, therefore;  s2 = s1 = 8.0290 kJ/(kg  K ) 
At P2 = 0.01 MPa, sf = 0.6491 kJ/kg⋅K, and  sg = 8.1510 kJ/(kg K); 
thus, sf < s2 < sg. 

State 2 is in the saturation region, and the quality is needed to specify the
state.

s s x s

x
s s

s

h h x h

kJ
kg

f fg

f

fg

f fg

2 2

2
2

2 2

8 0290 0 6491
7 5019

0 984

1918 0 984 2392 8

25457

= +

=
−

=
−

=

= +

= +

=

. .
.

.

. ( . )( . )

.

Since state 2 is in the two-phase region, T2 = Tsat at P2 = 45.8oC.
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w h h
kJ
kg

kJ
kg

= −

= −

=

1 2

3697 9 25457

1152 2

( . . )

.

Entropy Change and Isentropic Processes

The entropy-change and isentropic relations for a process can be sum-
marized as follows:

1. Pure substances: 
Any process: ∆s s s= −2 1 (kJ/kg⋅K)
Isentropic process: s s2 1=

2. Incompressible substances (Liquids and Solids): 

ds du
T

P
T

dv= +

The change in internal energy and volume for an incompressible substance
is 

du C dT
dv

=
≅ 0

The entropy change now becomes
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ds C dT
T

s C T dT
T

= +

= z
0

1

2
∆

( )

If the specific heat for the incompressible substance is constant, then the
entropy change is 

Any process:    s s C T
Tav2 1

2

1

− = ln (kJ/kg⋅K)

Isentropic process: T T2 1=

3.  Ideal gases: 

a. Constant specific heats (approximate treatment): 

Any process: (can you fill in the steps?)

s s C T
T

R v
vv av2 1

2

1

2

1

− = +, ln ln    (kJ/kg⋅K)
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and  (can you fill in the steps?)

2 2
2 1 ,

1 1

ln lnp av
T Ps s C R
T P

− = −    (kJ/kg⋅K)

Or, on a unit-mole basis,

s s C T
T

R v
vv av u2 1

2

1

2

1

− = +, ln ln    (kJ/kmol⋅K)

and
2 2

2 1 ,
1 1

ln lnp av u
T Ps s C R
T P

− = −    (kJ/kmol⋅K)

Isentropic process: (Can you fill in the steps here?)

T
T

v
vs const

k

2

1

1

2

1F
HG
I
KJ =

F
HG
I
KJ=

−

.

T
T

P
Ps const

k k

2

1

2

1

1F
HG
I
KJ =

F
HG
I
KJ=

−

.

( ) /

2 1

1 2.

k

s const

P v
P v

=

   
=   

   

For an isentropic process this last result looks like Pvk  = constant which is
the polytropic process equation Pvn = constant with n = k = Cp/Cv.
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b.  Variable specific heats (exact treatment):

From Tds = dh - vdP, we obtain

2 2
1

1

( )
lnpC T Ps dT R

T P
∆ = −∫

The first term can be integrated relative to a reference state at temperature
Tref..
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The integrals on the right-hand side of the above equation are called the
standard state entropies, so, at state 1, T1, and state 2, T2; so is a function of
temperature only. 
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Therefore, for any process:

s s s s R P
P

o o
2 1 2 1

2

1

− = − − ln               (kJ/kg⋅K)
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or

s s s s R P
P

o o
u2 1 2 1

2

1

− = − − ln             (kJ/kmol⋅K)

The standard state entropies are found in Tables A-17 for air on a mass
basis and Tables A-18 through A-25 for other gases on a mole basis.  When
using this variable specific heat approach to finding the entropy change for
an ideal gas, remember to include the pressure term along with the standard
state entropy terms--the tables don’t warn you to do this.

Isentropic process:  ∆s = 0 

s s R P
P

o o
2 1

2

1

= + ln               (kJ/kg⋅K)

If we are given T1, P1, and P2, we find so
1 at T1, calculate so

2, and then
determine from the tables T2, u2, and h2.  

When air undergoes an isentropic process when variable specific heat data
are required, there is another approach to finding the properties at the end of
the isentropic process.  Consider the entropy change written as

2 2
1

1

( )
lnpC T Ps dT R

T P
∆ = −∫

Letting T1 = Tref, P1 = Pref = 1atm, T2 = T, P2 = P, and setting the entropy
change equal to zero yield

P
P
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dT
ref s const
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F
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I
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F
HG

I
KJ

=
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'
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We define the relative pressure Pr as the above pressure ratio. Pr is the
pressure ratio necessary to have an isentropic process between the reference
temperature and the actual temperature and is a function of the actual
temperature.  This parameter is a function of temperature only and is found
in the air tables, Table A-17.  The relative pressure is not available for other
gases in this text. 

P EXP
R

C T
T

dTr s const
p

T

T

ref
b g = =

F
HG

I
KJz1 ( ' )

'
'

The ratio of pressures in an isentropic process is related to the ratio of
relative pressures.
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/
/

ref r

ref rs const s const

P PP P
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  
= =       

There is a second approach to finding data at the end of an ideal gas
isentropic process when variable specific heat data are required.  Consider
the following entropy change equation set equal to zero.

From Tds = du + Pdv, we obtain for ideal gases

∆s C T
T

dT R v
v

v= +z ( ) ln
1

2
2

1

Letting T1 = Tref, v1 = vref, T2 = T, v2 = v, and setting the entropy change
equal to zero yield

v
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We define the relative volume vr as the above volume ratio.  vr is the
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volume ratio necessary to have an isentropic process between the reference
temperature and the actual temperature and is a function of the actual
temperature. This parameter is a function of temperature only and is found
in the air tables, Table A-17.  The relative volume is not available for other
gases in this text. 
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Extra Assignment

For an ideal gas having constant specific heats and undergoing a polytropic
process in a closed system, Pvn = constant, with n = k, find the heat transfer
by applying the first law.  Based on the above discussion of isentropic
processes, explain your answer. Compare your results to this problem to a
similar extra assignment problem in Chapter 4.
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Example 6-7

Aluminum at 100oC is placed in a large, insulated tank having 10 kg of
water at a temperature of 30oC.  If the mass of the aluminum is 0.5 kg, find
the final equilibrium temperature of the aluminum and water, the entropy
change of the aluminum and the water, and the total entropy change of the
universe because of this process.  Before we work the problem, what do you
think the answers ought to be? Are entropy changes going to be positive or
negative?  What about the entropy generated as the process takes place?

System:  Closed system including the aluminum and water.

Property Relation:  ?

Process:  Constant volume, adiabatic, no work energy exchange between
the aluminum and water.

Conservation Principles:

Apply the first law, closed system to the aluminum-water system.

Q W U
U U

system

water AL

− =

− = +

∆

∆ ∆0 0

Using the solid and incompressible liquid relations, we have

m C T T m C T Twater water water AL AL AL( ) ( )2 1 2 1 0− + − =

But at equilibrium, T2,AL = T2,water = T2

Water

AL

Tank insulated
boundary
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T m C T m C T
m C m C

kg kJ kg K K kg kJ kg K K
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1 1
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.

The second law gives the entropy production, or total entropy change of the
universe, as

S S S Sgen total water AL= = + ≥∆ ∆ ∆ 0

Using the entropy change equation for solids and liquids,
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,

2

1

10 4 177 3038
30 273
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Why is ∆SAL negative?  Why is ∆Swater positive?  
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S S S S
kJ
K

kJ
K

gen total water AL= = +

= −

= +

∆ ∆ ∆

( . . )

.

01101 0 0966

0 0135

Why is Sgen or ∆STotal positive?

Example 6-8

Carbon dioxide initially at 50 kPa, 400 K, undergoes a process in a closed
system until its pressure and temperature are 2 MPa and 800 K,
respectively.  Assuming ideal gas behavior, find the entropy change of the
carbon dioxide by first assuming constant specific heats and then assuming
variable specific heats.  Compare your results with the real gas data
obtained from the EES software.

a. Assume the Table A-2(a) data at 300 K are adequate; then Cp = 0.846
kJ/kg⋅K and R = 0.1889 kJ/kg-K.
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b.  For variable specific heat data, use the carbon dioxide data from Table
A-20.

s s
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. ln

.

c. Using EES for carbon dioxide as a real gas:

Deltas =ENTROPY(CarbonDioxide,T=800,P=2000)-
ENTROPY(CarbonDioxide,T=400,P=50)

= +0.03452 kJ/kg⋅K

d. Repeat the constant specific heat calculation assuming Cp is a constant at
the average of the specific heats for the temperatures.  Then Cp = 1.054
kJ/kg⋅K (see Table A-2(b)). 
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It looks like the 300 K data give completely incorrect results here.  

If the compression process is adiabatic, why is ∆s positive for this process?
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