


























































































































































































































































































































































































































































































































































































276 Chapter 5. Differentiation and Antidifferentiation

for some fixed m, M ∈ E1, then

m[g(b)− g(a)] ≤ f(b)− f(a) ≤M [g(b)− g(a)].
[Hint: Apply Theorem 2 and Problem 4 to each of Mg − f and f −mg.]

(ii) Hence prove that

m0(b− a) ≤ f(b)− f(a) ≤M0(b− a),
where

m0 = inf f ′
+[I −Q] and M0 = sup f ′

+[I −Q] in E∗.

[Hint: Take g(x) = x if m0 ∈ E1 or M0 ∈ E1. The infinite case is simple.]

8. (i) Let f : (a, b)→ E be finite, continuous, with a right derivative on
(a, b). Prove that q = lim

x→a+
f ′
+(x) exists (finite) iff

q = lim
x, y→a+

f(x)− f(y)
x− y ,

i.e., iff

(∀ ε > 0) (∃ c > a) (∀x, y ∈ (a, c) | x 6= y)
∣

∣

∣

f(x)− f(y)
x− y −q

∣

∣

∣
< ε.

[Hints: If so, let y → x+ (keeping x fixed) to obtain

(∀ x ∈ (a, c)) |f ′
+(x)− q| ≤ ε. (Why?)

Conversely, if lim
x→a+

f ′
+(x) = q, then

(∀ ε > 0) (∃ c > a) (∀ t ∈ (a, c)) |f ′
+(t)− q| < ε.

Put

M = sup
a<t<c

|f ′
+(t)− q| ≤ ε (why ≤ ε?)

and

h(t) = f(t)− tq, t ∈ (a, b).

Apply Corollary 1 and Problem 4 to h on the interval [x, y] ⊆ (a, c), to get

|f(y)− f(x)− (y − x)q| ≤ M(y − x) ≤ ε(y − x).

Proceed.]

(ii) Prove similar statements for the cases q = ±∞ and x→ b−.
[Hint: In case q = ±∞, use Problem 7(ii) instead of Corollary 1.]

9. From Problem 8 deduce that if f is as indicated and if f ′
+ is left contin-

uous at some p ∈ (a, b), then f also has a left derivative at p.

If f ′
+ is also right continuous at p, then f ′

+(p) = f ′
−(p) = f ′(p).

[Hint: Apply Problem 8 to (a, p) and (p, b).]
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10. In Problem 8, prove that if, in addition, E is complete and if

q = lim
x→a+

f ′
+(x) 6= ±∞ (finite),

then f(a+) 6= ±∞ exists, and

lim
x→a+

f(x)− f(a+)
x− a = q;

similarly in case limx→b− f
′
+(x) = r.

If both exist, set f(a) = f(a+) and f(b) = f(b−). Show that then f
becomes relatively continuous on [a, b], with f ′

+(a) = q and f ′
−(b) = r.

[Hint: If
lim

x→a+
f ′
+(x) = q 6= ±∞,

then f ′
+ is bounded on some subinterval (a, c), a < c ≤ b (why?), so f is uniformly

continuous on (a, c), by Problem 5, and f(a+) exists. Let y → a+, as in the hint to

Problem 8.]

11. Do Problem 9 in §2 for complex and vector-valued functions.
[Hint: Use Corollary 1 of §4.]

12. Continuing Problem 7, show that the equalities

m =
f(b)− f(a)

b− a =M

hold iff f is linear , i.e., f(x) = cx + d for some c, d ∈ E1, and then
c = m =M .

13. Let f : E1 → C be as in Corollary 1, with f 6= 0 on I. Let g be the real
part of f ′/f .

(i) Prove that |f |↑ on I iff g ≥ 0 on I −Q.

(ii) Extend Problem 4 to this result.

14. Define f : E1 → C by

f(x) =

{

x2ei/x = x2
(

cos
1

x
+ i · sin 1

x

)

if x > 0, and

0 if x ≤ 0.

Show that f is differentiable on I = (−1, 1), yet f ′[I] is not a convex
set in E2 = C (thus there is no analogue to Theorem 4 of §2).
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§5. Antiderivatives (Primitives, Integrals)

Given f : E1 → E, we often have to find a function F such that F ′ = f on I,
or at least on I −Q.1 We also require F to be relatively continuous and finite
on I. This process is called antidifferentiation or integration.

Definition 1.

We call F : E1 → E a primitive, or antiderivative, or an indefinite inte-

gral , of f on I iff

(i) F is relatively continuous and finite on I, and

(ii) F is differentiable, with F ′ = f , on I −Q at least.

We then write

F =

∫

f, or F (x) =

∫

f(x) dx, on I.

(The latter is classical notation.)

If such an F exists (which is not always the case), we shall say that
∫

f exists on I, or that f has a primitive (or antiderivative) on I, or that
f is primitively integrable (briefly integrable) on I.

If F ′ = f on a set B ⊆ I, we say that
∫

f is exact on B and call F an
exact primitive on B. Thus if Q = ∅,

∫

f is exact on all of I.

Note 1. Clearly, if F ′ = f , then also (F + c)′ = f for a finite constant
c. Thus the notation F =

∫

f is rather incomplete; it means that F is one

of many primitives. We now show that all of them have the form F + c (or
∫

f + c).

Theorem 1. If F and G are primitive to f on I, then G−F is constant on I.

Proof. By assumption, F and G are relatively continuous and finite on I;
hence so is G− F . Also, F ′ = f on I −Q and G′ = f on I − P . (Q and P are
countable, but possibly Q 6= P .)

Hence both F ′ and G′ equal f on I−S, where S = P ∪Q, and S is countable
itself by Theorem 2 of Chapter 1, §9.

Thus by Corollary 3 in §4, F ′ = G′ on I − S implies G − F = c (constant)
on each [x, y] ⊆ I; hence G− F = c (or G = F + c) on I. �

Definition 2.

If F =
∫

f on I and if a, b ∈ I (where a ≤ b or b ≤ a), we define
∫ b

a

f =

∫ b

a

f(x) dx = F (b)− F (a), also written F (x)
∣

∣

∣

b

a
. (1)

1 In this section, Q, P , and S shall denote countable sets, F ′, G′, and H′ are finite

derivatives, and I is a finite or infinite nondegenerate interval in E1.
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This expression is called the definite integral of f from a to b.2

The definite integral of f from a to b is independent of the particular choice
of the primitive F for f , and thus unambiguous , for if G is another primitive,
Theorem 1 yields G = F + c, so

G(b)−G(a) = F (b) + c− [F (a) + c] = F (b)− F (a),

and it does not matter whether we take F or G.

Note that
∫ b

a
f(x) dx, or

∫ b

a
f , is a constant in the range space E (a vector

if f is vector valued). The “x” in
∫ b

a
f(x) dx is a “dummy variable” only, and

it may be replaced by any other letter. Thus

∫ b

a

f(x) dx =

∫ b

a

f(y) dy = F (b)− F (a).

On the other hand, the indefinite integral is a function: F : E1 → E.

Note 2. We may, however, vary a or b (or both) in (1). Thus, keeping a
fixed and varying b, we can define a function

G(t) =

∫ t

a

f = F (t)− F (a), t ∈ I.

Then G′ = F ′ = f on I, and G(a) = F (a) − F (a) = 0. Thus if
∫

f exists
on I, f has a (unique) primitive G on I such that G(a) = 0. (It is unique by
Theorem 1. Why?)

Examples.

(a) Let

f(x) =
1

x
and F (x) = ln |x|, with F (0) = f(0) = 0.

Then F ′ = f and F =
∫

f on (−∞, 0) and on (0, +∞) but not on E1,
since F is discontinuous at 0, contrary to Definition 1. We compute

∫ 2

1

f = ln 2− ln 1 = ln 2.

(b) On E1, let

f(x) =
|x|
x

and F (x) = |x|, with f(0) = 1.

Here F is continuous and F ′ = f on E1 − {0}. Thus F =
∫

f on E1,
exact on E1 − {0}. Here I = E1, Q = {0}.

2 The numbers a and b are called the bounds of the integral.
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We compute

∫ 2

−2

f = F (2)− F (−2) = 2− 2 = 0

(even though f never vanishes on E1).

Basic properties of integrals follow from those of derivatives. Thus we have
the following.

Corollary 1 (linearity). If
∫

f and
∫

g exist on I, so does
∫

(pf + qg) for any

scalars p, q (in the scalar field of E).3 Moreover , for any a, b ∈ I, we obtain

(i)

∫ b

a

(pf + qg) = p

∫ b

a

f + q

∫ b

a

g;

(ii)

∫ b

a

(f ± g) =
∫ b

a

f ±
∫ b

a

g; and

(iii)

∫ b

a

pf = p

∫ b

a

f .

Proof. By assumption, there are F and G such that

F ′ = f on I −Q and G′ = g on I − P .

Thus, setting S = P ∪Q and H = pF + qG, we have

H ′ = pF ′ + qG′ = pf + qg on I − S,

with P , Q, and S countable. Also, H = pF + qG is relatively continuous and
finite on I, as are F and G.

Thus by definition, H =
∫

(pf + qg) exists on I, and by (1),

∫ b

a

(pf+qg) = H(b)−H(a) = pF (b)+qG(b)−pF (a)−qG(a) = p

∫ b

a

f+q

∫ b

a

g,

proving (i∗).

With p = 1 and q = ±1, we obtain (ii∗).

Taking q = 0, we get (iii∗). �

Corollary 2. If both
∫

f and
∫

|f | exist on I = [a, b], then

∣

∣

∣

∫ b

a

f
∣

∣

∣
≤

∫ b

a

|f |.

3 In the case f, g : E1 → E∗ (C), we assume p, q ∈ E1 (C). If f and g are scalar valued,

we also allow p and q to be vectors in E.
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Proof. As before, let

F ′ = f and G′ = |f | on I − S (S = Q ∪ P , all countable),
where F and G are relatively continuous and finite on I and G =

∫

|f | is real .
Also, |F ′| = |f | = G′ on I − S. Thus by Theorem 1 of §4,

|F (b)− F (a)| ≤ G(b)−G(a) =
∫ b

a

|f |. �

Corollary 3. If
∫

f exists on I = [a, b], exact on I −Q, then

∣

∣

∣

∫ b

a

f
∣

∣

∣
≤M(b− a)

for some real

M ≤ sup
t∈I−Q

|f(t)|.

This is simply Corollary 1 of §4, when applied to a primitive, F =
∫

f .

Corollary 4. If F =
∫

f on I and f = g on I −Q, then F is also a primitive

of g, and
∫ b

a

f =

∫ b

a

g for a, b ∈ I.

(Thus we may arbitrarily redefine f on a countable Q.)

Proof. Let F ′ = f on I−P . Then F ′ = g on I−(P ∪Q). The rest is clear. �

Corollary 5 (integration by parts). Let f and g be real or complex (or let

f be scalar valued and g vector valued), both relatively continuous on I and

differentiable on I −Q. Then if
∫

f ′g exists on I, so does
∫

fg′, and we have

∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g for any a, b ∈ I. (2)

Proof. By assumption, fg is relatively continuous and finite on I, and

(fg)′ = fg′ + f ′g on I −Q.

Thus, setting H = fg, we have H =
∫

(fg′ + f ′g) on I. Hence by Corollary 1,
if
∫

f ′g exists on I, so does
∫

((fg′ + f ′g)− f ′g) =
∫

fg′, and
∫ b

a

fg′ +

∫ b

a

f ′g =

∫ b

a

(fg′ + f ′g) = H(b)−H(a) = f(b)g(b)− f(a)g(a).

Thus (2) follows. �

The proof of the next three corollaries is left to the reader.
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Corollary 6 (additivity of the integral). If
∫

f exists on I then, for a, b, c ∈ I,
we have

(i)

∫ b

a

f =

∫ c

a

f +

∫ b

c

f ;

(ii)

∫ a

a

f = 0; and

(iii)

∫ a

b

f = −
∫ b

a

f .

Corollary 7 (componentwise integration). A function f : E1 → En (Cn)
is integrable on I iff all its components (f1, f2, . . . , fn) are, and then (by
Theorem 5 in §1)

∫ b

a

f =
(

∫ b

a

f1, . . . ,

∫ b

a

fn

)

=

n
∑

k=1

~ek

∫ b

a

fk for any a, b ∈ I.

Hence if f is complex ,

∫ b

a

f =

∫ b

a

fre + i ·
∫ b

a

fim

(see Chapter 4, §3, Note 5).

Examples (continued).

(c) Define f : E1 → E3 by

f(x) = (a · cosx, a · sinx, 2cx), a, c ∈ E1.

Verify that
∫ π

0

f(x) dx = (a · sinx, −a · cosx, cx2)
∣

∣

∣

π

0
= (0, 2a, cπ2) = 2a~j + cπ2~k.

(d)

∫ π

0

eix dx =

∫ π

0

(cosx+ i · sinx) dx = (sinx− i · cosx)
∣

∣

∣

π

0
= 2i.

Corollary 8. If f = 0 on I −Q, then
∫

f exists on I, and

∣

∣

∣

∫ b

a

f
∣

∣

∣
=

∫ b

a

|f | = 0 for a, b ∈ I.

Theorem 2 (change of variables). Suppose g : E1 → E1 (real) is differentiable
on I, while f : E1 → E has a primitive on g[I],4 exact on g[I −Q].

4 Note that g[I] is an interval , for g has the Darboux property (Chapter 4, §9, Note 1).
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Then
∫

f
(

g(x)
)

g′(x) dx (i .e.,

∫

(f ◦ g)g′)

exists on I, and for any a, b ∈ I, we have
∫ b

a

f
(

g(x)
)

g′(x) dx =

∫ q

p

f(y) dy, where p = g(a) and q = g(b). (3)

Thus, using classical notation, we may substitute y = g(x), provided that we

also substitute dy = g′(x) dx and change the bounds of integrals (3). Here we
treat the expressions dy and g′(x) dx purely formally, without assigning them
any separate meaning outside the context of the integrals.

Proof. Let F =
∫

f on g[I], and F ′ = f on g[I − Q]. Then the composite
function H = F ◦ g is relatively continuous and finite on I. (Why?) By
Theorem 3 of §1,

H ′(x) = F ′(g(x)
)

g′(x) for x ∈ I −Q;

i.e.,
H ′ = (F ′ ◦ g)g′ on I −Q.

Thus H =
∫

(f ◦ g)g′ exists on I, and
∫ b

a

(f ◦ g)g′ = H(b)−H(a) = F
(

g(b)
)

− F
(

g(a)
)

= F (q)− F (p) =
∫ q

p

f. �

Note 3. The theorem does not require that g be one to one on I, but if
it is, then one can drop the assumption that

∫

f is exact on g[I − Q]. (See
Problem 4.)

Examples (continued).

(e) Find

∫ π/2

0

sin2 x · cosx dx.

Here f(y) = y2, y = g(x) = sinx, dy = cosx dx, F (y) = y3/3, a = 0,
b = π/2, p = sin 0 = 0, and q = sin(π/2) = 1, so (3) yields

∫ π/2

0

sin2 x · cosx dx =

∫ 1

0

y2 dy =
y3

3

∣

∣

∣

1

0
=

1

3
− 0 =

1

3
.

For real functions, we obtain some inferences dealing with inequalities .

Theorem 3. If f, g : E1 → E1 are integrable on I = [a, b], then we have the

following :

(i) f ≥ 0 on I −Q implies
∫ b

a
f ≥ 0.

(i′) f ≤ 0 on I −Q implies
∫ b

a
f ≤ 0.
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(ii) f ≥ g on I −Q implies

∫ b

a

f ≥
∫ b

a

g (dominance law).

(iii) If f ≥ 0 on I −Q and a ≤ c ≤ d ≤ b, then
∫ b

a

f ≥
∫ d

c

f (monotonicity law).

(iv) If
∫ b

a
f = 0, and f ≥ 0 on I −Q, then f = 0 on some I −P , P countable.

Proof. By Corollary 4, we may redefine f on Q so that our assumptions in
(i)–(iv) hold on all of I. Thus we write “I” for “I −Q.”

By assumption, F =
∫

f and G =
∫

g exist on I. Here F and G are relatively
continuous and finite on I = [a, b], with F ′ = f and G′ = g on I−P , for another
countable set P (this P cannot be omitted). Now consider the cases (i)–(iv).
(P is fixed henceforth.)

(i) Let f ≥ 0 on I; i.e., F ′ = f ≥ 0 on I −P . Then by Theorem 2 in §4, F↑
on I = [a, b]. Hence F (a) ≤ F (b), and so

∫ b

a

f = F (b)− F (a) ≥ 0.

One proves (i′) similarly.

(ii) If f − g ≥ 0, then by (i),

∫ b

a

(f − g) =
∫ b

a

f −
∫ b

a

g ≥ 0,

so
∫ b

a
f ≥

∫ b

a
g, as claimed.

(iii) Let f ≥ 0 on I and a ≤ c ≤ d ≤ b. Then by (i),

∫ c

a

f ≥ 0 and

∫ b

d

f ≥ 0.

Thus by Corollary 6,

∫ b

a

f =

∫ c

a

f +

∫ d

c

f +

∫ b

d

f ≥
∫ d

c

f,

as asserted.

(iv) Seeking a contradiction, suppose
∫ b

a
f = 0, f ≥ 0 on I, yet f(p) > 0 for

some p ∈ I − P (P as above), so F ′(p) = f(p) > 0.
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Now if a ≤ p < b, Lemma 1 of §2 yields F (c) > F (p) for some c ∈ (p, b].
Then by (iii),

∫ b

a

f ≥
∫ c

p

f = F (c)− F (p) > 0,

contrary to
∫ b

a
f = 0; similarly in case a < p ≤ b. �

Note 4. Hence
∫ b

a

|f | = 0 implies f = 0 on [a, b]− P

(P countable), even for vector-valued functions (for |f | is always real , and so
Theorem 3 applies).

However,
∫ b

a
f = 0 does not suffice, even for real functions (unless f is sign-

constant). For example,

∫ 2π

0

sinx dx = 0, yet sinx 6≡ 0 on any I − P .

See also Example (b).

Corollary 9 (first law of the mean). If f is real and
∫

f exists on [a, b], exact
on (a, b), then

∫ b

a

f = f(q)(b− a) for some q ∈ (a, b).

Proof. Apply Corollary 3 in §2 to the function F =
∫

f . �

Caution: Corollary 9 may fail if
∫

f is inexact at some p ∈ (a, b). (Exactness
on [a, b] − Q does not suffice, as it does not in Corollary 3 of §2, used here.)

Thus in Example (b) above,
∫ 2

−2
f = 0. Yet for no q is f(q)(2 + 2) = 0, since

f(q) = ±1. The reason is that
∫

f is inexact just at 0, an interior point of
[−2, 2].

Problems on Antiderivatives

1. Prove in detail Corollaries 3, 4, 6, 7, 8, and 9 and Theorem 3(i′) and
(iv).

2. In Examples (a) and (b) discuss continuity and differentiability of f and
F at 0. In (a) show that

∫

f does not exist on any interval (−a, a).
[Hint: Use Theorem 1.]

3. Show that Theorem 2 holds also if g is relatively continuous on I and
differentiable on I −Q.
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4. Under the assumptions of Theorem 2, show that if g is one to one on I,
then automatically

∫

f is exact on g[I −Q] (Q countable).
[Hint: If F =

∫
f on g[I], then

F ′ = f on g[I]− P , P countable.

Let Q = g−1[P ]. Use Problem 6 of Chapter 1, §§4–7 and Problem 2 of Chapter 1,
§9 to show that Q is countable and g[I]− P = g[I −Q].]

5. Prove Corollary 5 for dot products f · g of vector-valued functions.

6. Prove that if
∫

f exists on [a, p] and [p, b], then it exists on [a, b]. By
induction, extend this to unions of n adjacent intervals.
[Hint: Choose F =

∫
f on [a, p] and G =

∫
f on [p, b] such that F (p) = G(p).

(Why do such F, G exist?) Then construct a primitive H =
∫
f that is relatively

continuous on all of [a, b].]

7. Prove the weighted law of the mean: If g is real and nonnegative on
I = [a, b], and if

∫

g and
∫

gf exist on I for some f : E1 → E, then
there is a finite c ∈ E with

∫ b

a

gf = c

∫ b

a

g.

(The value c is called a g-weighted mean of f .)

[Hint: If
∫ b
a g > 0, put

c =

∫ b

a
gf

/∫ b

a
g.

If
∫ b
a
g = 0, use Theorem 3(i) and (iv) to show that also

∫ b
a
gf = 0, so any c will do.]

8. In Problem 7, prove that if, in addition, f is real and has the Darboux
property on I, then c = f(q) for some q ∈ I (the second law of the

mean).

[Hint: Choose c as in Problem 7. If
∫ b
a g > 0, put

m = inf f [I] and M = sup f [I], in E∗,

so m ≤ f ≤ M on I. Deduce that

m

∫ b

a
g ≤

∫ b

a
gf ≤ M

∫ b

a
g,

whence m ≤ c ≤ M .

If m < c < M , then f(x) < c < f(y) for some x, y ∈ I (why?), so the Darboux

property applies.

If c = m, then g · (f − c) ≥ 0 and Theorem 3(iv) yields gf = gc on I−P . (Why?)

Deduce that f(q) = c if g(q) 6= 0 and q ∈ I − P . (Why does such a q exist?)

What if c = M?]

9. Taking g(x) ≡ 1 in Problem 8, obtain a new version of Corollary 9.
State it precisely!
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⇒10. Prove that if F =
∫

f on I = (a, b) and f is right (left) continuous and
finite at p ∈ I, then

f(p) = F ′
+(p) (respectively, F

′
−(p)).

Deduce that if f is continuous and finite on I, all its primitives on I
are exact on I.
[Hint: Fix ε > 0. If f is right continuous at p, there is c ∈ I (c > p), with

|f(x)− f(p)| < ε for x ∈ [p, c).

Fix such an x. Let

G(t) = F (t)− tf(p), t ∈ E1.

Deduce that G′(t) = f(t)− f(p) for t ∈ I −Q.

By Corollary 1 of §4,

|G(x)−G(p)| = |F (x)− F (p)− (x− p)f(p)| ≤ M(x − p),

with M ≤ ε. (Why?) Hence

∣
∣
∣
∆F

∆x
− f(p)

∣
∣
∣ ≤ ε for x ∈ [p, c),

and so

lim
x→p+

∆F

∆x
= f(p) (why?);

similarly for a left-continuous f .]

11. State and solve Problem 10 for the case I = [a, b].

12. (i) Prove that if f is constant (f = c 6= ±∞) on I −Q, then

∫ b

a

f = (b− a)c for a, b ∈ I.

(ii) Hence prove that if f = ck 6= ±∞ on

Ik = [ak, ak+1), a = a0 < a1 < · · · < an = b,

then
∫

f exists on [a, b], and

∫ b

a

f =

n−1
∑

k=0

(ak+1 − ak)ck.

Show that this is true also if f = ck 6= ±∞ on Ik −Qk.

[Hint: Use Problem 6.]

13. Prove that if
∫

f exists on each In = [an, bn], where

an+1 ≤ an ≤ bn ≤ bn+1, n = 1, 2, . . . ,
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then
∫

f exists on

I =

∞
⋃

n=1

[an, bn],

itself an interval with endpoints a = inf an and b = sup bn, a, b ∈ E∗.
[Hint: Fix some c ∈ I1. Define

Hn(t) =

∫ t

c
f on In, n = 1, 2, . . . .

Prove that

(∀n ≤ m) Hn = Hm on In (since {In}↑).

Thus Hn(t) is the same for all n such that t ∈ In, so we may simply write H for

Hn on I =
⋃∞

n=1 In. Show that H =
∫
f on all of I; verify that I is, indeed, an

interval .]

14. Continuing Problem 13, prove that
∫

f exists on an interval I iff it exists
on each closed subinterval [a, b] ⊆ I.
[Hint: Show that each I is the union of an expanding sequence In = [an, bn]. For
example, if I = (a, b), a, b ∈ E1, put

an = a+
1

n
and bn = b− 1

n
for large n (how large?),

and show that

I =
⋃

n

[an, bn] over such n.]

§6. Differentials. Taylor’s Theorem and Taylor’s Series

Recall (Theorem 2 of §1) that a function f is differentiable at p iff

∆f = f ′(p)∆x+ δ(x)∆x,

with limx→p δ(x) = δ(p) = 0. It is customary to write df for f ′(p)∆x and
o(∆x) for δ(x)∆x;1 df is called the differential of f (at p and x). Thus

∆f = df + o(∆x);

i.e., df approximates ∆f to within o(∆x).

More generally, given any function f : E1 → E and p, x ∈ E1, we define

dnf = dnf(p, x) = f (n)(p)(x− p)n, n = 0, 1, 2, . . . , (1)

1 This is the so-called “little o” notation. Given g : E1 → E1, we write o(g(x)) for any

expression of the form δ(x)g(x), with δ(x) → 0. In our case, g(x) = ∆x.
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where f (n) is the nth derived function (Definition 2 in §1); dnf is called the
nth differential , or differential of order n, of f (at p and x). In particular,
d1f = f ′(p)∆x = df .2 By our conventions, dnf is always defined, as is f (n).

As we shall see, good approximations of ∆f (suggested by Taylor) can often
be obtained by using higher differentials (1), as follows:

∆f = df +
d2f

2!
+
d3f

3!
+ · · ·+ dnf

n!
+Rn, n = 1, 2, 3, . . . , (2)

where

Rn = ∆f −
n
∑

k=1

dkf

k!
(the “remainder term”)

is the error of the approximation. Substituting the values of ∆f and dkf and
transposing f(p), we have

f(x) = f(p)+
f ′(p)

1!
(x− p) + f ′′(p)

2!
(x− p)2 + · · ·+ f (n)(p)

n!
(x− p)n +Rn. (3)

Formula (3) is known as the nth Taylor expansion of f about p (with remain-
der term Rn to be estimated). Usually we treat p as fixed and x as variable.
Writing Rn(x) for Rn and setting

Pn(x) =

n
∑

k=0

f (k)(p)

k!
(x− p)k,

we have

f(x) = Pn(x) +Rn(x).

The function Pn : E
1 → E so defined is called the nth Taylor polynomial for

f about p. Thus (3) yields approximations of f by polynomials Pn, n =
1, 2, 3, . . . . This is one way of interpreting it. The other (easy to remem-
ber) one is (2), which gives approximations of ∆f by the dkf . It remains,
however, to find a good estimate for Rn. We do it next.

Theorem 1 (Taylor). Let the function f : E1 → E and its first n derived

functions be relatively continuous and finite on an interval I and differentiable

on I −Q (Q countable). Let p, x ∈ I. Then formulas (2) and (3) hold , with

Rn =
1

n!

∫ x

p

f (n+1)(t) · (x− t)n dt (“integral form of Rn”) (3′)

and

|Rn| ≤Mn
|x− p|n+1

(n+ 1)!
for some real Mn ≤ sup

t∈I−Q
|f (n+1)(t)|. (3′′)

2 Footnote 2 of §1 applies to dnf , as it does to ∆f (and to Rn defined below).
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Proof. By definition, Rn = f − Pn, or

Rn = f(x)− f(p)−
n
∑

k=1

f (k)(p)
(x− p)k

k!
.

We use the right side as a “pattern” to define a function h : E1 → E. This
time, we keep x fixed (say, x = a ∈ I) and replace p by a variable t. Thus we
set

h(t) = f(a)− f(t)− f ′(t)

1!
(a− t)− · · · − f (n)(t)

n!
(a− t)n for all t ∈ E1. (4)

Then h(p) = Rn and h(a) = 0. Our assumptions imply that h is relatively
continuous and finite on I, and differentiable on I −Q. Differentiating (4), we
see that all cancels out except for one term

h′(t) = −f (n+1)(t)
(a− t)n
n!

, t ∈ I −Q. (Verify!) (5)

Hence by Definitions 1 and 2 of §5,

−h(t) = 1

n!

∫ a

t

f (n+1)(s)(a− s)n ds on I

and

1

n!

∫ a

p

f (n+1)(t)(a− t)n dt = −h(a) + h(p) = 0 +Rn = Rn (for h(p) = Rn).

As x = a, (3′) is proved.

Next, let

M = sup
t∈I−Q

|f (n+1)(t)|.

If M < +∞, define

g(t) =M
(t− a)n+1

(n+ 1)!
for t ≥ a and g(t) = −M (a− t)n+1

(n+ 1)!
for t ≤ a.

In both cases,

g′(t) =M
|a− t|n
n!

≥ |h′(t)| on I −Q by (5).

Hence, applying Theorem 1 in §4 to the functions h and g on the interval [a, p]
(or [p, a]), we get

|h(p)− h(a)| ≤ |g(p)− g(a)|,
or

|Rn − 0| ≤M |a− p|
n+1

(n+ 1)!
.
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Thus (3′′) follows, with Mn =M .

Finally, if M = +∞, we put

Mn = |Rn|
(n+ 1)!

|a− p|n+1
< M. �

For real functions, we obtain some additional estimates of Rn.

Theorem 1′. If f is real and n + 1 times differentiable on I, then for p 6= x
(p, x ∈ I), there are qn, q

′
n in the interval (p, x) (respectively , (x, p)) such that

Rn =
f (n+1)(qn)

(n+ 1)!
(x− p)n+1 (5′)

and

Rn =
f (n+1)(q′n)

n!
(x− p)(x− q′n)n. (5′′)

(Formulas (5′) and (5′′) are known as the Lagrange and Cauchy forms of

Rn, respectively.)

Proof. Exactly as in the proof of Theorem 1, we obtain the function h and
formula (5). By our present assumptions, h is differentiable (hence continuous)
on I, so we may apply to it Cauchy’s law of the mean (Theorem 2 of §2) on
the interval [a, p] (or [p, a] if p < a), where a = x ∈ I.

For this purpose, we shall associate h with another suitable function g (to
be specified later). Then by Theorem 2 of §2, there is a real q ∈ (a, p) (respec-
tively, q ∈ (p, a)) such that

g′(q)[h(a)− h(p)] = h′(q)[g(a)− g(p)].
Here by the previous proof, h(a) = 0, h(p) = Rn, and

h′(q) = −f
(n+1)

n!
(a− q)n.

Thus

g′(q) ·Rn =
f (n+1)(q)

n!
(a− q)n[g(a)− g(p)]. (6)

Now define g by
g(t) = a− t, t ∈ E1.

Then
g(a)− g(p) = −(a− p) and g′(q) = −1,

so (6) yields (5′′) (with q′n = q and a = x).

Similarly, setting g(t) = (a − t)n+1, we obtain (5′). (Verify!) Thus all is
proved. �
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Note 1. In (5′) and (5′′), the numbers qn and q′n depend on n and are
different in general (qn 6= q′n), for they depend on the choice of the function g.
Since they are between p and x, they may be written as

qn = p+ θn(x− p) and q′n = p+ θ′n(x− p),

where 0 < θn < 1 and 0 < θ′n < 1. (Explain!)

Note 2. For any function f : E1 → E, the Taylor polynomials Pn are partial
sums of a power series, called the Taylor series for f (about p). We say that f
admits such a series on a set B iff the series converges to f on B; i.e.,

f(x) = lim
n→∞

Pn(x) =

∞
∑

n=1

f (n)(p)

n!
(x− p)n 6= ±∞ for x ∈ B. (7)

This is clearly the case iff

lim
n→∞

Rn(x) = lim
n→∞

[f(x)− Pn(x)] = 0 for x ∈ B;

briefly, Rn → 0. Thus

f admits a Taylor series (about p) iff Rn → 0.

Caution: The convergence of the series alone (be it pointwise or uniform)
does not suffice. Sometimes the series converges to a sum other than f(x); then
(7) fails . Thus all depends on the necessary and sufficient condition: Rn → 0.

Before giving examples, we introduce a convenient notation.

Definition 1.

We say that f is of class CDn, or continuously differentiable n times , on a
set B iff f is n times differentiable on B, and f (n) is relatively continuous
on B. Notation: f ∈ CDn (on B).

If this holds for each n ∈ N , we say that f is infinitely differentiable

on B and write f ∈ CD∞ (on B).

The notation f ∈ CD0 means that f is finite and relatively continuous
(all on B).

Examples.

(a) Let

f(x) = ex on E1.

Then

(∀n) f (n)(x) = ex,

so f ∈ CD∞ on E1. At p = 0, f (n)(p) = 1, so we obtain by Theorem 1′
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(using (5′) and Note 1)

ex = 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!
+

eθnx

(n+ 1)!
xn+1, 0 < θn < 1. (8)

Thus on an interval [−a, a],

ex ≈ 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!

to within an error Rn (> 0 if x > 0) with

|Rn| < ea
an+1

(n+ 1)!
,

which tends to 0 as n→ +∞. For a = 1 = x, we get

e = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
+Rn with 0 < Rn <

e1

(n+ 1)!
. (9)

Taking n = 10, we have

e ≈ 2.7182818|011463845 . . .
with a nonnegative error of no more than

e

11!
= 0.00000006809869 . . . ;

all digits are correct before the vertical bar.

(b) Let

f(x) = e−1/x2

with f(0) = 0.

As limx→0 f(x) = 0 = f(0), f is continuous at 0.3 We now show that
f ∈ CD∞ on E1.

For x 6= 0, this is clear; moreover, induction yields

f (n)(x) = e−1/x2

x−3nSn(x),

where Sn is a polynomial in x of degree 2(n−1) (this is all we need know
about Sn). A repeated application of L’Hôpital’s rule then shows that

lim
x→0

f (n)(x) = 0 for each n.

To find f ′(0), we have to use the definition of a derivative:

f ′(0) = lim
x→0

f(x)− f(0)
x− 0

,

3 At other points, f is continuous by the continuity of exponentials.
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or by L’Hôpital’s rule,

f ′(0) = lim
x→0

f ′(x)

1
= 0.

Using induction again, we get

f (n)(0) = 0, n = 1, 2, . . . .

Thus, indeed, f has finite derivatives of all orders at each x ∈ E1, includ-
ing x = 0, so f ∈ CD∞ on E1, as claimed.

Nevertheless, any attempt to use formula (3) at p = 0 yields nothing.
As all f (n) vanish at 0, so do all terms except Rn. Thus no approximation

by polynomials results—we only get Pn = 0 on E1 and Rn(x) = e−1/x2

.
Rn does not tend to 0 except at x = 0, so f admits no Taylor series about

0 (except on E = {0}).4

Taylor’s theorem also yields sufficient conditions for maxima and minima,
as we see in the following theorem.

Theorem 2. Let f : E1 → E∗ be of class CDn on Gp(δ) for an even number

n ≥ 2, and let

f (k)(p) = 0 for k = 1, 2, . . . , n− 1,

while

f (n)(p) < 0 (respectively , f (n)(p) > 0).

Then f(p) is the maximum (respectively , minimum) value of f on some Gp(ε),
ε ≤ δ.

If , however , these conditions hold for some odd n ≥ 1 (i .e., the first non-

vanishing derivative at p is of odd order), f has no maximum or minimum

at p.

Proof. As

f (k)(p) = 0, k = 1, 2, . . . , n− 1,

Theorem 1′ (with n replaced by n− 1) yields

f(x) = f(p) + f (n)(qn)
(x− p)n

n!
for all x ∈ Gp(δ),

with qn between x and p.

Also, as f ∈ CDn, f (n) is continuous at p. Thus if f (n)(p) < 0, then f (n) < 0
on some Gp(ε), 0 < ε ≤ δ. However, x ∈ Gp(ε) implies qn ∈ Gp(ε), so

f (n)(qn) < 0,

4 Taylor’s series with p = 0 is often called the Maclaurin series (though without proper

justification). As we see, it may fail even if f ∈ CD∞ near 0.
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while
(x− p)n ≥ 0 if n is even.

It follows that

f (n)(qn)
(x− p)n

n!
≤ 0,

and so

f(x) = f(p) + f (n)(qn)
(x− p)n

n!
≤ f(p) for x ∈ Gp(ε),

i.e., f(p) is the maximum value of f on Gp(ε), as claimed.

Similarly, in the case f (n)(p) > 0, a minimum would result.

If, however, n is odd , then (x − p)n is negative for x < p but positive for
x > p. The same argument then shows that f(x) < f(p) on one side of p and
f(x) > f(p) on the other side; thus no local maximum or minimum can exist
at p. This completes the proof. �

Examples.

(a′) Let
f(x) = x2 on E1 and p = 0.

Then
f ′(x) = 2x and f ′′(x) = 2 > 0,

so
f ′(0) = 0 and f ′′(0) = 2 > 0.

By Theorem 2, f(p) = 02 = 0 is a minimum value.

It turns out to be a minimum on all of E1. Indeed, f ′(x) > 0 for x > 0,
and f ′ < 0 for x < 0, so f strictly decreases on (−∞, 0) and increases on
(0, +∞).

Actually, even without using Theorem 2, the last argument yields the
answer.

(b′) Let
f(x) = lnx on (0, +∞).

Then

f ′(x) =
1

x
> 0 on all of (0,+∞).

This shows that f strictly increases everywhere and hence can have no
maximum or minimum anywhere. The same follows by the second part
of Theorem 2, with n = 1.

(b′′) In Example (b′), consider also

f ′′(x) = − 1

x2
< 0.
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In this case, f ′′ has no bearing on the existence of a maximum or minimum
because f ′ 6= 0. Still, the formula f ′′ < 0 does have a certain meaning. In
fact, if f ′′(p) < 0 and f ∈ CD2 on Gp(δ), then (using the same argument
as in Theorem 2) the reader will easily find that

f(x) ≤ f(p) + f ′(p)(x− p) for x in some Gp(ε), 0 < ε ≤ δ. (10)

Since y = f(p)+f ′(p)(x−p) is the equation of the tangent at p, it follows
that f(x) ≤ y; i.e., near p the curve lies below the tangent at p.

Similarly, f ′′(p) > 0 and f ∈ CD2 on Gp(δ) implies that the curve near
p lies above the tangent.

Problems on Taylor’s Theorem

1. Complete the proofs of Theorems 1, 1′, and 2.

2. Verify Note 1 and Examples (b) and (b′′).

3. Taking g(t) = (a− t)s, s > 0, in (6), find

Rn =
f (n+1)(q)

n! s
(x− p)s(x− q)n+1−s (Schloemilch–Roche remainder).

Obtain (5′) and (5′′) from it.

4. Prove that Pn (as defined) is the only polynomial of degree n such that

f (k)(p) = P (k)
n (p), k = 0, 1, . . . , n.

[Hint: Differentiate Pn n times to verify that it satisfies this property.

For uniqueness, suppose this also holds for

P (x) =
n∑

k−0

ak(x− p)k.

Differentiate P n times to show that

P (k)(p) = f (k)(p) = akk!,

so P = Pn. (Why?)]

5. With Pn as defined, prove that if f is n times differentiable at p, then

f(x)− Pn(x) = o((x− p)n) as x→ p

(Taylor’s theorem with Peano remainder term).
[Hint: Let R(x) = f(x)− Pn(x) and

δ(x) =
R(x)

(x− p)n
with δ(p) = 0.

Using the “simplified” L’Hôpital rule (Problem 3 in §3) repeatedly n times, prove
that limx→p δ(x) = 0.]
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6. Use Theorem 1′ with p = 0 to verify the following expansions, and prove
that limn→∞Rn = 0.

(a) sinx = x− x3

3!
+
x5

5!
− · · · − (−1)mx2m−1

(2m− 1)!
+

(−1)mx2m+1

(2m+ 1)!
cos θmx

for all x ∈ E1;

(b) cosx = 1− x2

2!
+
x4

4!
− · · ·+ (−1)mx2m

(2m)!
− (−1)mx2m+2

(2m+ 2)!
sin θmx for

all x ∈ E1.

[Hints: Let f(x) = sinx and g(x) = cos x. Induction shows that

f (n)(x) = sin
(

x+
nπ

2

)

and g(n)(x) = cos
(

x+
nπ

2

)

.

Using formula (5′), prove that

|Rn(x)| ≤
∣
∣
∣

xn+1

(n+ 1)!

∣
∣
∣ → 0.

Indeed, xn/n! is the general term of a convergent series

∑ xn

n!
(see Chapter 4, §13, Example (d)).

Thus xn/n! → 0 by Theorem 4 of the same section.]

7. For any s ∈ E1 and n ∈ N , define
(

s

n

)

=
s(s− 1) · · · (s− n+ 1)

n!
with

(

s

0

)

= 1.

Then prove the following.

(i) lim
n→∞

n

(

s

n

)

= 0 if s > 0.

(ii) lim
n→∞

(

s

n

)

= 0 if s > −1.

(iii) For any fixed s ∈ E1 and x ∈ (−1, 1),

lim
n→∞

(

s

n

)

nxn = 0;

hence

lim
n→∞

(

s

n

)

xn = 0.

[Hints: (i) Let an =
∣
∣
∣n
(s

n

)∣
∣
∣. Verify that

an = |s|
∣
∣
∣1− s

1

∣
∣
∣

∣
∣
∣1− s

2

∣
∣
∣ · · ·

∣
∣
∣1− s

n− 1

∣
∣
∣.
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If s > 0, {an}↓ for n > s + 1, so we may put L = lim an = lim a2n ≥ 0. (Explain!)
Prove that

a2n

an
<

∣
∣
∣1− s

2n

∣
∣
∣
n
→ e−

1
2
s as n → ∞,

so for large n,
a2n

an
< e−

1
2
s + ε; i.e., a2n < (e−

1
2
s + ε)an.

With ε fixed, let n → ∞ to get L ≤ (e−
1
2
s+ε)L. Then with ε → 0, obtain Le

1
2
s ≤ L.

As e
1
2
s > 1 (for s > 0), this implies L = 0, as claimed.

(ii) For s > −1, s+ 1 > 0, so by (i),

(n+ 1)
(s+ 1

n+ 1

)

→ 0; i.e., (s+ 1)
(s

n

)

→ 0. (Why?)

(iii) Use the ratio test to show that the series
∑(s

n

)

nxn converges when |x| < 1.

Then apply Theorem 4 of Chapter 4, §13.]

8. Continuing Problems 6 and 7, prove that

(1 + x)s =
n
∑

k=0

(

s

k

)

xk +Rn(x),

where Rn(x)→ 0 if either |x| < 1, or x = 1 and s > −1, or x = −1 and
s > 0.
[Hints: (a) If 0 ≤ x ≤ 1, use (5′) for

Rn−1(x) =
(s

n

)

xn(1 + θnx)
s−n, 0 < θn < 1. (Verify!)

Deduce that |Rn−1(x)| ≤
∣
∣
∣

(s

n

)

xn
∣
∣
∣ → 0. Use Problem 7(iii) if |x| < 1 or Problem 7(ii)

if x = 1.

(b) If −1 ≤ x < 0, write (5′′) as

Rn−1(x) =
(s

n

)

nxn(1 + θ′nx)s
−1

( 1− θ′n
1 + θ′nx

)n−1
. (Check!)

As −1 ≤ x < 0, the last fraction is ≤ 1. (Why?) Also,

(1 + θ′nx)
s−1 ≤ 1 if s > 1, and ≤ (1 + x)s−1 if s ≤ 1.

Thus, with x fixed, these expressions are bounded , while
(s

n

)

nxn → 0 by Problem 7(i)

or (iii). Deduce that Rn−1 → 0, hence Rn → 0.]

9. Prove that

ln(1 + x) =
n
∑

k=1

(−1)k+1x
k

k
+Rn(x),

where limn→∞Rn(x) = 0 if −1 < x ≤ 1.
[Hints: If 0 ≤ x ≤ 1, use formula (5′).

If −1 < x < 0, use formula (6) with g(t) = ln(1 + t) to obtain

Rn(x) =
ln(1 + x)

(−1)n

( 1− θn

1 + θnx
· x

)n
.

Saylor URL: http://www.saylor.org/courses/ma241/ The Saylor Foundation



§6. Differentials. Taylor’s Theorem and Taylor’s Series 299

Proceed as in Problem 8.]

10. Prove that if f : E1 → E∗ is of class CD1 on [a, b] and if −∞ < f ′′ < 0
on (a, b), then for each x0 ∈ (a, b),

f(x0) >
f(b)− f(a)

b− a (x0 − a) + f(a);

i.e., the curve y = f(x) lies above the secant through (a, f(a)) and
(b, f(b)).
[Hint: This formula is equivalent to

f(x0)− f(a)

x0 − a
>

f(b)− f(a)

b− a
,

i.e., the average of f ′ on [a, x0] is strictly greater than the average of f ′ on [a, b],

which follows because f ′ decreases on (a, b). (Explain!)]

11. Prove that if a, b, r, and s are positive reals and r + s = 1, then

arbs ≤ ra+ sb.

(This inequality is important for the theory of so-called Lp-spaces.)
[Hints: If a = b, all is trivial.

Therefore, assume a < b. Then

a = (r + s)a < ra + sb < b.

Use Problem 10 with x0 = ra + sb ∈ (a, b) and

f(x) = lnx, f ′′(x) = − 1

x2
< 0.

Verify that

x0 − a = x0 − (r + s)a = s(b− a)

and r · ln a = (1− s) ln a; hence deduce that

r · ln a+ s · ln b− ln a = s(ln b− ln a) = s(f(b)− f(a)).

After substitutions, obtain

f(x0) = ln(ra + sb) > r · ln a+ s · ln b = ln(arbs).]

12. Use Taylor’s theorem (Theorem 1′) to prove the following inequalities:

(a) 3
√
1 + x < 1 +

x

3
if x > −1, x 6= 0.

(b) cosx > 1− 1

2
x2 if x 6= 0.

(c)
x

1 + x2
< arctanx < x if x > 0.

(d) x > sinx > x− 1

6
x3 if x > 0.
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§7. The Total Variation (Length) of a Function f : E1 → E

The question that we shall consider now is how to define reasonably (and
precisely) the notion of the length of a curve (Chapter 4, §10) described by a
function f : E1 → E over an interval I = [a, b], i.e., f [I].

We proceed as follows (see Figure 24).1

q0 = f(t0)

q1 = f(t1)
q2 = f(t2)

q3 = f(t3)

q = f(c)

f : E1 → E2

Figure 24

Subdivide [a, b] by a finite set of
points P = {t0, t1, . . . , tm}, with

a = t0 ≤ t1 ≤ · · · ≤ tm = b;

P is called a partition of [a, b]. Let

qi = f(ti), i = 1, 2, . . . , m,

and, for i = 1, 2, . . . , m,

∆if = qi − qi−1

= f(ti)− f(ti−1).

We also define

S(f, P ) =

m
∑

i=1

|∆if | =
m
∑

i=1

|qi − qi−1|.

Geometrically, |∆if | = |qi−qi−1| is the length of the line segment L[qi−1, qi]
in E, and S(f, P ) is the sum of such lengths, i.e., the length of the polygon

W =
m
⋃

i=1

L[qi−1, qi]

inscribed into f [I]; we denote it by

ℓW = S(f, P ).

Now suppose we add a new partition point c, with

ti−1 ≤ c ≤ ti.

Then we obtain a new partition

Pc = {t0, . . . , ti−1, c, ti, . . . , tm},
called a refinement of P , and a new inscribed polygonWc in which L[qi−1, qi] is
replaced by two segments, L[qi−1, q] and L[q, qi], where q = f(c); see Figure 24.
Accordingly, the term |∆if | = |qi − qi−1| in S(f, P ) is replaced by

|qi − q|+ |q − qi−1| ≥ |qi − qi−1| (triangle law).

1 Note that this method works even if f is discontinuous.
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It follows that

S(f, P ) ≤ S(f, Pc); i.e., ℓW ≤ ℓWc.

Hence we obtain the following result.

Corollary 1. The sum S(f, P ) = ℓW cannot decrease when P is refined .

Thus when new partition points are added, S(f, P ) grows in general; i.e.,
it approaches some supremum value (finite or not). Roughly speaking, the
inscribed polygon W gets “closer” to the curve. It is natural to define the
desired length of the curve to be the lub of all lengths ℓW , i.e., of all sums
S(f, P ) resulting from the various partitions P . This supremum is also called
the total variation of f over [a, b], denoted Vf [a, b].

2

Definition 1.

Given any function f : E1 → E, and I = [a, b] ⊂ E1, we set

Vf [I] = Vf [a, b] = sup
P
S(f, P ) = sup

P

m
∑

i=1

|f(ti)− f(ti−1)| ≥ 0 in E∗, (1)

where the supremum is over all partitions P = {t0, . . . , tm} of I. We call
Vf [I] the total variation, or length, of f on I. Briefly, we denote it by Vf .

Note 1. If f is continuous on [a, b], the image set A = f [I] is an arc

(Chapter 4, §10). It is customary to call Vf [I] the length of that arc, denoted
ℓfA or briefly ℓA. Note, however, that there may well be another function
g, continuous on an interval J , such that g[J ] = A but Vf [I] 6= Vg[J ], and
so ℓfA 6= ℓgA. Thus it is safer to say “the length of A as described by f on

I.” Only for simple arcs (where f is one to one), is “ℓA” unambiguous. (See
Problems 6–8.)

In the propositions below, f is an arbitrary function, f : E1 → E.

Theorem 1 (additivity of Vf ). If a ≤ c ≤ b, then
Vf [a, b] = Vf [a, c] + Vf [c, b];

i .e., the length of the whole equals the sum of the lengths of the parts .

Proof. Take any partition P = {t0, . . . , tm} of [a, b]. If c /∈ P , refine P to

Pc = {t0, . . . , ti, c, ti, . . . , tm}.
Then by Corollary 1, S(f, P ) ≤ S(f, Pc).

Now Pc splits into partitions of [a, c] and [c, b], namely,

P ′ = {t0, . . . , ti−1, c} and P ′′ = {c, ti, . . . , tm},

2 We also call it the length of f over [a, b]. Observe that, for real f : E1 → E1, this is not

the length of the graph in the usual sense (which is a curve in E2). See the end of §8.
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so that

S(f, P ′) + S(f, P ′′) = S(f, Pc). (Verify!)

Hence (as Vf is the lub of the corresponding sums),

Vf [a, c] + Vf [c, d] ≥ S(f, Pc) ≥ S(f, P ).

As P is an arbitrary partition of [a, b], we also have

Vf [a, c] + Vf [c, b] ≥ supS(f, P ) = Vf [a, b].

Thus it remains to show that, conversely,

Vf [a, b] ≥ Vf [a, c] + Vf [c, b].

The latter is trivial if Vf [a, b] = +∞. Thus assume Vf [a, b] = K < +∞. Let
P ′ and P ′′ be any partitions of [a, c] and [c, b], respectively. Then P ∗ = P ′∪P ′′

is a partition of [a, b], and

S(f, P ′) + S(f, P ′′) = S(f, P ∗) ≤ Vf [a, b] = K,

whence

S(f, P ′) ≤ K − S(f, P ′′).

Keeping P ′′ fixed and varying P ′, we see that K−S(f, P ′′) is an upper bound
of all S(f, P ′) over [a, c]. Hence

Vf [a, c] ≤ K − S(f, P ′′)

or

S(f, P ′′) ≤ K − Vf [a, c].

Similarly, varying P ′′, we now obtain

Vf [c, b] ≤ K − Vf [a, c]

or

Vf [a, c] + Vf [c, b] ≤ K = Vf [a, b],

as required. Thus all is proved. �

Corollary 2 (monotonicity of Vf ). If a ≤ c ≤ d ≤ b, then

Vf [c, d] ≤ Vf [a, b].

Proof. By Theorem 1,

Vf [a, b] = Vf [a, c] + Vf [c, d] + Vf [d, b] ≥ Vf [c, d]. �
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Definition 2.

If Vf [a, b] < +∞, we say that f is of bounded variation on I = [a, b], and
that the set f [I] is rectifiable (by f on I).

Corollary 3. For each t ∈ [a, b],

|f(t)− f(a)| ≤ Vf [a, b].
Hence if f is of bounded variation on [a, b], it is bounded on [a, b].

Proof. If t ∈ [a, b], let P = {a, t, b}, so
|f(t)− f(a)| ≤ |f(t)− f(a)|+ |f(b)− f(t)| = S(f, P ) ≤ Vf [a, b],

proving our first assertion.3 Hence

(∀ t ∈ [a, b]) |f(t)| ≤ |f(t)− f(a)|+ |f(a)| ≤ Vf [a, b] + |f(a)|.
This proves the second assertion. �

Note 2. Neither boundedness, nor continuity, nor differentiability of f on
[a, b] implies Vf [a, b] < +∞, but boundedness of f ′ does . (See Problems 1 and
3.)

Corollary 4. A function f is finite and constant on [a, b] iff Vf [a, b] = 0.

The proof is left to the reader. (Use Corollary 3 and the definitions.)

Theorem 2. Let f, g, h be real or complex (or let f and g be vector valued

and h scalar valued). Then on any interval I = [a, b], we have

(i) V|f | ≤ Vf ;
(ii) Vf±g ≤ Vf + Vg; and

(iii) Vhf ≤ sVf + rVh, with r = supt∈I |f(t)| and s = supt∈I |h(t)|.
Hence if f , g, and h are of bounded variation on I, so are f±g, hf , and |f |.

Proof. We first prove (iii).

Take any partition P = {t0, . . . , tm} of I. Then
|∆ihf | = |h(ti)f(ti)− h(ti−1)f(ti−1)|

≤ |h(ti)f(ti)− h(ti−1)f(ti)|+ |h(ti−1)f(ti)− h(ti−1)f(ti−1)|
= |f(ti)||∆ih|+ |h(ti−1)||∆if |
≤ r|∆ih|+ s|∆if |.

Adding these inequalities, we obtain

S(hf, P ) ≤ r · S(h, P ) + s · S(f, P ) ≤ rVh + sVf .

3 By our conventions, it also follows that |f(a)| is a finite constant, and so is Vf [a, b]+|f(a)|
if Vf [a, b] < +∞.
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As this holds for all sums S(hf, P ), it holds for their supremum, so

Vhf = supS(hf, P ) ≤ rVh + sVf ,

as claimed.

Similarly, (i) follows from
∣

∣|f(ti)| − |f(ti−1)|
∣

∣ ≤ |f(ti)− f(ti−1)|.
The analogous proof of (ii) is left to the reader.

Finally, (i)–(iii) imply that Vf , Vf±g, and Vhf are finite if Vf , Vg, and Vh
are. This proves our last assertion. �

Note 3. Also f/h is of bounded variation on I if f and h are, provided h
is bounded away from 0 on I; i.e.,

(∃ ε > 0) |h| ≥ ε on I.

(See Problem 5.)

Special theorems apply in case the range space E is E1 or En (∗or Cn).

Theorem 3.

(i) A real function f is of bounded variation on I = [a, b] iff f = g − h for

some nondecreasing real functions g and h on I.

(ii) If f is real and monotone on I, it is of bounded variation there.

Proof. We prove (ii) first.

Let f↑ on I. If P = {t0, . . . , tm}, then
ti ≥ ti−1 implies f(ti) ≥ f(ti−1).

Hence ∆if ≥ 0; i.e., |∆if | = ∆if . Thus

S(f, P ) =
m
∑

i=1

|∆if | =
m
∑

i=1

∆if =
m
∑

i=1

[f(ti)− f(ti−1)]

= f(tm)− f(t0) = f(b)− f(a)
for any P . (Verify!) This implies that also

Vf [I] = supS(f, P ) = f(b)− f(a) < +∞.
Thus (ii) is proved.

Now for (i), let f = g − h with g↑ and h↑ on I. By (ii), g and h are of
bounded variation on I. Hence so is f = g − h by Theorem 2 (last clause).

Conversely, suppose Vf [I] < +∞. Then define

g(x) = Vf [a, x], x ∈ I, and h = g − f on I,

so f = g − h, and it only remains to show that g↑ and h↑.
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To prove it, let a ≤ x ≤ y ≤ b. Then Theorem 1 yields

Vf [a, y]− Vf [a, x] = Vf [x, y];

i.e.,

g(y)− g(x) = Vf [x, y] ≥ |f(y)− f(x)| ≥ 0 (by Corollary 3). (2)

Hence g(y) ≥ g(x). Also, as h = g − f , we have

h(y)− h(x) = g(y)− f(y)− [g(x)− f(x)]
= g(y)− g(x)− [f(y)− f(x)]
≥ 0 by (2).

Thus h(y) ≥ h(x). We see that a ≤ x ≤ y ≤ b implies g(x) ≤ g(y) and
h(x) ≤ h(y), so h↑ and g↑, indeed. �

Theorem 4.

(i) A function f : E1 → En (∗Cn) is of bounded variation on I = [a, b] iff
all of its components (f1, f2, . . . , fn) are.

(ii) If this is the case, then finite limits f(p+) and f(q−) exist for every

p ∈ [a, b) and q ∈ (a, b].

Proof.

(i) Take any partition P = {t0, . . . , tm} of I. Then

|fk(ti)− fk(ti−1)|2 ≤
n
∑

j=1

|fj(ti)− fj(ti−1)|2 = |f(ti)− f(ti−1)|2;

i.e., |∆ifk| ≤ |∆if |, i = 1, 2, . . . , m. Thus

(∀P ) S(fk, P ) ≤ S(f, P ) ≤ Vf ,
and Vfk ≤ Vf follows. Thus

Vf < +∞ implies Vfk < +∞, k = 1, 2, . . . , n.

The converse follows by Theorem 2 since f =
∑n

k=1 fk~ek. (Explain!)

(ii) For real monotone functions, f(p+) and f(q−) exist by Theorem 1 of
Chapter 4, §5. This also applies if f is real and of bounded variation, for
by Theorem 3,

f = g − h with g↑ and h↑ on I,
and so

f(p+) = g(p+)− h(p+) and f(q−) = g(q−)− h(q−) exist.
The limits are finite since f is bounded on I by Corollary 3.
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Via components (Theorem 2 of Chapter 4, §3), this also applies to
functions f : E1 → En. (Why?) In particular, (ii) applies to complex

functions (treat C as E2) (∗and so it extends to functions f : E1 → Cn

as well). �

We also have proved the following corollary.

Corollary 5. A complex function f : E1 → C is of bounded variation on [a, b]
iff its real and imaginary parts are. (See Chapter 4, §3, Note 5.)

Problems on Total Variation and Graph Length

1. In the following cases show that Vf [I] = +∞, though f is bounded on
I. (In case (iii), f is continuous, and in case (iv), it is even differentiable
on I.)

(i) For I = [a, b] (a < b), f(x) =

{

1 if x ∈ R (rational), and

0 if x ∈ E1 −R.
(ii) f(x) = sin

1

x
; f(0) = 0; I = [a, b], a ≤ 0 ≤ b, a < b.

(iii) f(x) = x · sin π

2x
; f(0) = 0; I = [0, 1].

(iv) f(x) = x2 sin
1

x2
; f(0) = 0; I = [0, 1].

[Hints: (i) For any m there is P , with

|∆if | = 1, i = 1, 2, . . . , m,

so S(f, P ) = m → +∞.

(iii) Let

Pm =
{

0,
1

m
,

1

m− 1
, . . . ,

1

2
, 1

}

.

Prove that S(f, Pm) ≥ ∑m
k=1

1
k
→ +∞.]

2. Let f : E1 → E1 be monotone on each of the intervals

[ak−1, ak], k = 1, . . . , n (“piecewise monotone”).

Prove that

Vf [a0, an] =

n
∑

k=1

|f(ak)− f(ak−1)|.

In particular, show that this applies if f(x) =
∑n

i=1 cix
i (polynomial),

with ci ∈ E1.
[Hint: It is known that a polynomial of degree n has at most n real roots. Thus it
is piecewise monotone, for its derivative vanishes at finitely many points (being of

degree n− 1). Use Theorem 1 in §2.]
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⇒3. Prove that if f is finite and relatively continuous on I = [a, b], with a
bounded derivative, |f ′| ≤M , on I −Q (see §4), then

Vf [a, b] ≤M(b− a).

However, we may have Vf [I] < +∞, and yet |f ′| = +∞ at some p ∈ I.
[Hint: Take f(x) = 3

√
x on [−1, 1].]

4. Complete the proofs of Corollary 4 and Theorems 2 and 4.

5. Prove Note 3.
[Hint: If |h| ≥ ε on I, show that

∣
∣
∣

1

h(ti)
− 1

h(ti−1)

∣
∣
∣ ≤ |∆ih|

ε2

and hence

S
( 1

h
, P

)

≤ S(h, P )

ε2
≤ Vh

ε2
.

Deduce that 1
h

is of bounded variation on I if h is. Then apply Theorem 2(iii) to
1
h
· f .]

6. Let g : E1 → E1 (real) and f : E1 → E be relatively continuous on
J = [c, d] and I = [a, b], respectively, with a = g(c) and b = g(d). Let

h = f ◦ g.

Prove that if g is one to one on J , then

(i) g[J ] = I, so f and h describe one and the same arc A = f [I] = h[J ];

(ii) Vf [I] = Vh[J ]; i.e., ℓfA = ℓhA.

[Hint for (ii): Given P = {a = t0, . . . , tm = b}, show that the points si = g−1(ti)
form a partition P ′ of J = [c, d], with S(h, P ′) = S(f, P ). Hence deduce Vf [I] ≤
Vh[J].

Then prove that Vh[J] ≤ Vf [I], taking an arbitrary P ′ = {c = s0, . . . , sm = d},
and defining P = {t0, . . . , tm}, with ti = g(si). What if g(c) = b, g(d) = a?]

7. Prove that if f, h : E1 → E are relatively continuous and one to one on
I = [a, b] and J = [c, d], respectively, and if

f [I] = h[J ] = A

(i.e., f and h describe the same simple arc A), then

ℓfA = ℓhA.

Thus for simple arcs, ℓfA is independent of f .
[Hint: Define g : J → E1 by g = f−1 ◦ h. Use Problem 6 and Chapter 4, §9,
Theorem 3. First check that Problem 6 works also if g(c) = b and g(d) = a, i.e., g↓
on J.]

Saylor URL: http://www.saylor.org/courses/ma241/ The Saylor Foundation



308 Chapter 5. Differentiation and Antidifferentiation

8. Let I = [0, 2π] and define f, g, h : E1 → E2 (C) by

f(x) = (sinx, cosx),

g(x) = (sin 3x, cos 3x),

h(x) =
(

sin
1

x
, cos

1

x

)

with h(0) = (0, 1).

Show that f [I] = g[I] = h[I] (the unit circle; call it A), yet ℓfA = 2π,
ℓgA = 6π, while Vh[I] = +∞. (Thus the result of Problem 7 fails for
closed curves and nonsimple arcs.)

9. In Theorem 3, define two functions G, H : E1 → E1 by

G(x) =
1

2
[Vf [a, x] + f(x)− f(a)]

and

H(x) = G(x)− f(x) + f(a).

(G and H are called, respectively, the positive and negative variation

functions for f .) Prove that

(i) G↑ and H↑ on [a, b];

(ii) f(x) = G(x)− [H(x)− f(a)] (thus the functions f and g of Theo-
rem 3 are not unique);

(iii) Vf [a, x] = G(x) +H(x);

(iv) if f = g − h, with g↑ and h↑ on [a, b], then

VG[a, b] ≤ Vg[a, b], and VH [a, b] ≤ Vh[a, b];

(v) G(a) = H(a) = 0.

∗10. Prove that if f : E1 → En (Cn) is of bounded variation on I = [a, b],
then f has at most countably many discontinuities in I.
[Hint: Apply Problem 5 of Chapter 4, §5. Proceed as in the proof of Theorem 4 in
§7. Finally, use Theorem 2 of Chapter 1, §9.]

§8. Rectifiable Arcs. Absolute Continuity

If a function f : E1 → E is of bounded variation (§7) on an interval I = [a, b],
we can define a real function vf on I by

vf (x) = Vf [a, x] (= total variation of f on [a, x]) for x ∈ I;
vf is called the total variation function, or length function, generated by f on
I. Note that vf↑ on I. (Why?) We now consider the case where f is also
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relatively continuous on I, so that the set A = f [I] is a rectifiable arc (see §7,
Note 1 and Definition 2).

Definition 1.

A function f : E1 → E is (weakly) absolutely continuous1 on I = [a, b] iff
Vf [I] < +∞ and f is relatively continuous on I.

Theorem 1. The following are equivalent :

(i) f is (weakly) absolutely continuous on I = [a, b];

(ii) vf is finite and relatively continuous on I; and

(iii) (∀ ε > 0) (∃ δ > 0) (∀x, y ∈ I | 0 ≤ y − x < δ) Vf [x, y] < ε.

Proof. We shall show that (ii) ⇒ (iii) ⇒ (i) ⇒ (ii).

(ii) ⇒ (iii). As I = [a, b] is compact , (ii) implies that vf is uniformly

continuous on I (Theorem 4 of Chapter 4, §8). Thus

(∀ ε > 0) (∃ δ > 0) (∀x, y ∈ I | 0 ≤ y − x < δ) vf (y)− vf (x) < ε.

However,

vf (y)− vf (x) = Vf [a, y]− Vf [a, x] = Vf [x, y]

by additivity (Theorem 1 in §7). Thus (iii) follows.
(iii) ⇒ (i). By Corollary 3 of §7, |f(x) − f(y)| ≤ Vf [x, y]. Therefore, (iii)

implies that

(∀ ε > 0) (∃ δ > 0) (∀x, y ∈ I | |x− y| < δ) |f(x)− f(y)| < ε,

and so f is relatively (even uniformly) continuous on I.

Now with ε and δ as in (iii), take a partition P = {t0, . . . , tm} of I so fine
that

ti − ti−1 < δ, i = 1, 2, . . . , m.

Then (∀ i) Vf [ti−1, ti] < ε. Adding up these m inequalities and using the
additivity of Vf , we obtain

Vf [I] =
m
∑

i=1

Vf [ti−1, ti] < mε < +∞.

Thus (i) follows, by definition.

That (i) ⇒ (ii) is given as the next theorem. �

1 In this section, we use this notion in a weaker sense than customary. The usual stronger

version is given in Problem 2. We study it in Volume 2, Chapter 7, §11.
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Theorem 2. If Vf [I] < +∞ and if f is relatively continuous at some p ∈ I
(over I = [a, b]), then the same applies to the length function vf .

Proof. We consider left continuity first, with a < p ≤ b.
Let ε > 0. By assumption, there is δ > 0 such that

|f(x)− f(p)| < ε

2
when |x− p| < δ and x ∈ [a, p].

Fix any such x. Also, Vf [a, p] = supP S(f, P ) over [a, p]. Thus

Vf [a, p]−
ε

2
<

k
∑

i=1

|∆if |

for some partition

P = {t0 = a, . . . , tk−1, tk = p} of [a, p]. (Why?)

We may assume tk−1 = x, x as above. (If tk−1 6= x, add x to P .) Then

|∆kf | = |f(p)− f(x)| <
ε

2
,

and hence

Vf [a, p]−
ε

2
<

k−1
∑

i=1

|∆if |+ |∆kf | <
k−1
∑

i=1

|∆if |+
ε

2
≤ Vf [a, tk−1] +

ε

2
. (1)

However,

Vf [a, p] = vf (p)

and

Vf [a, tk−1] = Vf [a, x] = vf (x).

Thus (1) yields

|vf (p)− vf (x)| = Vf [a, p]− Vf [a, x] < ε for x ∈ [a, p] with |x− p| < δ.

This shows that vf is left continuous at p.

Right continuity is proved similarly on noting that

vf (x)− vf (p) = Vf [p, b]− Vf [x, b] for p ≤ x < b. (Why?)

Thus vf is, indeed, relatively continuous at p. Observe that vf is also of
bounded variation on I, being monotone and finite (see Theorem 3(ii) of §7).

This completes the proof of both Theorem 2 and Theorem 1. �

We also have the following.
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Corollary 1. If f is real and absolutely continuous on I = [a, b] (weakly),
so are the nondecreasing functions g and h (f = g − h) defined in Theorem 3
of §7.

Indeed, the function g as defined there is simply vf . Thus it is relatively
continuous and finite on I by Theorem 1. Hence so also is h = f − g. Both are
of bounded variation (monotone!) and hence absolutely continuous (weakly).

Note 1. The proof of Theorem 1 shows that (weak) absolute continuity

implies uniform continuity . The converse fails, however (see Problem 1(iv)
in §7).

We now apply our theory to antiderivatives (integrals).

Corollary 2. If F =
∫

f on I = [a, b] and if f is bounded (|f | ≤ K ∈ E1) on
I −Q (Q countable), then F is weakly absolutely continuous on I.

(Actually, even the stronger variety of absolute continuity follows. See Chap-
ter 7, §11, Problem 17).

Proof. By definition, F =
∫

f is finite and relatively continuous on I, so we
only have to show that VF [I] < +∞. This, however, easily follows by Problem 3
of §7 on noting that F ′ = f on I − S (S countable). Details are left to the
reader. �

Our next theorem expresses arc length in the form of an integral.

Theorem 3. If f : E1 → E is continuously differentiable on I = [a, b] (§6),
then vf =

∫

|f ′| on I and

Vf [a, b] =

∫ b

a

|f ′|.

Proof. Let a < p < x ≤ b, ∆x = x− p, and
∆vf = vf (x)− vf (p) = Vf [p, x]. (Why?)

As a first step, we shall show that

∆vf
∆x

≤ sup
[p,x]

|f ′|. (2)

For any partition P = {p = t0, . . . , tm = x} of [p, x], we have

S(f, P ) =
m
∑

i=1

|∆if | ≤
m
∑

i=1

sup
[ti−1,ti]

|f ′| (ti − ti−1) ≤ sup
[p,x]

|f ′|∆x.

Since this holds for any partition P , we have

Vf [p, x] ≤ sup
[p,x]

|f ′|∆x,

which implies (2).
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On the other hand,

∆vf = Vf [p, x] ≥ |f(x)− f(p)| = |∆f |.
Combining, we get

∣

∣

∣

∆f

∆x

∣

∣

∣
≤ ∆vf

∆x
≤ sup

[p,x]

|f ′| < +∞ (3)

since f ′ is relatively continuous on [a, b], hence also uniformly continuous and
bounded. (Here we assumed a < p < x ≤ b. However, (3) holds also if
a ≤ x < p < b, with ∆vf = −V [x, p] and ∆x < 0. Verify!)

Now
∣

∣|f ′(p)| − |f ′(x)|
∣

∣ ≤ |f ′(p)− f ′(x)| → 0 as x→ p,

so, taking limits as x→ p, we obtain

lim
x→p

∆vf
∆x

= |f ′(p)|.

Thus vf is differentiable at each p in (a, b), with v′f (p) = |f ′(p)|. Also, vf is

relatively continuous and finite on [a, b] (by Theorem 1).2 Hence vf =
∫

|f ′|
on [a, b], and we obtain

∫ b

a

|f ′| = vf (b)− vf (a) = Vf [a, b], as asserted. � (4)

Note 2. If the range space E is En (∗or Cn), f has n components

f1, f2, . . . , fn.

By Theorem 5 in §1, f ′ = (f ′
1, f

′
2, . . . , f

′
n), so

|f ′| =
√

n
∑

k=1

|f ′
k|2 ,

and we get

Vf [a, b] =

∫ b

a

√

n
∑

k=1

|f ′
k|2 =

∫ b

a

√

n
∑

k=1

|f ′
k(t)|2 dt (classical notation). (5)

In particular, for complex functions, we have (see Chapter 4, §3, Note 5)

Vf [a, b] =

∫ b

a

√

f ′
re(t)

2 + f ′
im(t)

2 dt. (6)

In practice, formula (5) is used when a curve is given parametrically by

xk = fk(t), k = 1, 2, . . . , n,

2 Note that (3) implies the finiteness of vf (p) and vf (x).
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with the fk differentiable on [a, b]. Curves in E2 are often given in nonpara-

metric form as

y = F (x), F : E1 → E1.

Here F [I] is not the desired curve but simply a set in E1. To apply (5) here,
we first replace “y = F (x)” by suitable parametric equations,

x = f1(t) and y = f2(t);

i.e., we introduce a function f : E1 → E, with f = (f1, f2). An obvious (but
not the only) way of achieving it is to set

x = f1(t) = t and y = f2(t) = F (t)

so that f ′
1 = 1 and f ′

2 = F ′. Then formula (5) may be written as

Vf [a, b] =

∫ b

a

√

1 + F ′(x)2 dx, f(x) = (x, F (x)). (7)

Example.

Find the length of the circle

x2 + y2 = r2.

Here it is convenient to use the parametric equations

x = r cos t and y = r sin t,

i.e., to define f : E1 → E2 by

f(t) = (r cos t, r sin t),

or, in complex notation,

f(t) = reti.

Then the circle is obtained by letting t vary through [0, 2π]. Thus (5)
yields

Vf [0, 2π] =

∫ b

a

r
√

cos2 t+ sin2 t dt = r

∫ b

a

1 dt = rt
∣

∣

∣

2π

0
= 2rπ.

Note that f describes the same circle A = f [I] over I = [0, 4π]. More
generally, we could let t vary through any interval [a, b] with b − a ≥
2π. However, the length, Vf [a, b], would change (depending on b − a).
This is because the circle A = f [I] is not a simple arc (see §7, Note 1),
so ℓA depends on f and I, and one must be careful in selecting both
appropriately.
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Problems on Absolute Continuity and Rectifiable Arcs

1. Complete the proofs of Theorems 2 and 3, giving all missing details.

⇒2. Show that f is absolutely continuous (in the weaker sense) on [a, b] if
for every ε > 0 there is δ > 0 such that

m
∑

i=1

|f(ti)− f(si)| < ε whenever

m
∑

i=1

(ti − si) < δ and

a ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sm ≤ tm ≤ b.

(This is absolute continuity in the stronger sense.)

3. Prove that vf is strictly monotone on [a, b] iff f is not constant on any
nondegenerate subinterval of [a, b].
[Hint: If x < y, Vf [x, y] > 0, by Corollary 4 of §7].

4. With f, g, h as in Theorem 2 of §7, prove that if f, g, h are absolutely
continuous (in the weaker sense) on I, so are f ± g, hf , and |f |; so also
is f/h if (∃ ε > 0) |h| ≥ ε on I.

5. Prove the following:

(i) If f ′ is finite and 6= 0 on I = [a, b], so also is v′f (with one-sided

derivatives at the endpoints of the interval); moreover,

∣

∣

∣

f ′

v′f

∣

∣

∣
= 1 on I.

Thus show that f ′/v′f is the tangent unit vector (see §1).
(ii) Under the same assumptions, F = f ◦ v−1

f is differentiable on

J = [0, vf (b)] (with one-sided derivatives at the endpoints of the
interval) and F [J ] = f [I]; i.e., F and f describe the same simple
arc, with VF [I] = Vf [I].

Note that this is tantamount to a change of parameter . Setting
s = vf (t), i.e., t = v−1

f (s), we have f(t) = f(v−1
f (s)) = F (s), with

the arclength s as parameter .

§9. Convergence Theorems in Differentiation and Integration

Given

Fn =

∫

fn or F ′
n = fn, n = 1, 2, . . . ,

what can one say about
∫

lim fn or (limFn)
′ if the limits exist? Below we give

some answers, for complete range spaces E (such as En). Roughly, we have
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limF ′
n = (limFn)

′ on I −Q if

(a) {Fn(p)} converges for at least one p ∈ I and

(b) {F ′
n} converges uniformly .

Here I is a finite or infinite interval in E1 and Q is countable. We include in

Q the endpoints of I (if any), so I −Q ⊆ I0 (= interior of I).

Theorem 1. Let Fn : E
1 → E (n = 1, 2, . . . ) be finite and relatively continu-

ous on I and differentiable on I −Q. Suppose that

(a) limn→∞ Fn(p) exists for some p ∈ I;
(b) F ′

n → f 6= ±∞ (uniformly) on J −Q for each finite subinterval J ⊆ I;
(c) E is complete.

Then

(i) limn→∞ Fn = F exists uniformly on each finite subinterval J ⊆ I;
(ii) F =

∫

f on I; and

(iii) (limFn)
′ = F ′ = f = limn→∞ F ′

n on I −Q.

Proof. Fix ε > 0 and any subinterval J ⊆ I of length δ < ∞, with p ∈ J (p
as in (a)). By (b), F ′

n → f (uniformly) on J −Q, so there is a k such that for
m, n > k,

|F ′
n(t)− f(t)| <

ε

2
, t ∈ J −Q; (1)

hence

sup
t∈J−Q

|F ′
m(t)− F ′

n(t)| ≤ ε. (Why?) (2)

Now apply Corollary 1 in §4 to the function h = Fm − Fn on J . Then for
each x ∈ J , |h(x)− h(p)| ≤M |x− p|, where

M ≤ sup
t∈J−Q

|h′(t)| ≤ ε

by (2). Hence for m, n > k, x ∈ J and

|Fm(x)− Fn(x)− Fm(p) + Fn(p)| ≤ ε|x− p| ≤ εδ. (3)

As ε is arbitrary , this shows that the sequence

{Fn − Fn(p)}
satisfies the uniform Cauchy criterion (Chapter 4, §12, Theorem 3). Thus as E
is complete, {Fn−Fn(p)} converges uniformly on J . So does {Fn}, for {Fn(p)}
converges, by (a). Thus we may set

F = limFn (uniformly) on J ,
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proving assertion (i).1

Here by Theorem 2 of Chapter 4, §12, F is relatively continuous on each

such J ⊆ I, hence on all of I. Also, letting m → +∞ (with n fixed), we have
Fm → F in (3), and it follows that for n > k and x ∈ Gp(δ) ∩ I.

|F (x)− Fn(x)− F (p) + Fn(p)| ≤ ε|x− p| ≤ εδ. (4)

Having proved (i), we may now treat p as just any point in I. Thus formula
(4) holds for any globe Gp(δ), p ∈ I. We now show that

F ′ = f on I −Q; i.e., F =

∫

f on I.

Indeed, if p ∈ I − Q, each Fn is differentiable at p (by assumption), and
p ∈ I0 (since I −Q ⊆ I0 by our convention). Thus for each n, there is δn > 0
such that

∣

∣

∣

∆Fn

∆x
− F ′

n(p)
∣

∣

∣
=

∣

∣

∣

Fn(x)− Fn(p)

x− p − F ′
n(p)

∣

∣

∣
<
ε

2
(5)

for all x ∈ G¬p(δn); Gp(δn) ⊆ I.
By assumption (b) and by (4), we can fix n so large that

|F ′
n(p)− f(p)| <

ε

2

and so that (4) holds for δ = δn. Then, dividing by |∆x| = |x− p|, we have
∣

∣

∣

∆F

∆x
− ∆Fn

∆x

∣

∣

∣
≤ ε.

Combining with (5), we infer that for each ε > 0, there is δ > 0 such that
∣

∣

∣

∆F

∆x
−f(p)

∣

∣

∣
≤

∣

∣

∣

∆F

∆x
−∆Fn

∆x

∣

∣

∣
+
∣

∣

∣

∆Fn

∆x
−F ′

n(p)
∣

∣

∣
+ |F ′

n(p)−f(p)| < 2ε, x ∈ Gp(δ).

This shows that

lim
x→p

∆F

∆x
= f(p) for p ∈ I −Q,

i.e., F ′ = f on I −Q, with f finite by assumption, and F finite by (4). As F
is also relatively continuous on I, assertion (ii) is proved, and (iii) follows since
F = limFn and f = limF ′

n. �

Note 1. The same proof also shows that Fn → F (uniformly) on each closed

subinterval J ⊆ I if F ′
n → f (uniformly) on J − Q for all such J (with the

other assumptions unchanged). In any case, we then have Fn → F (pointwise)
on all of I.

We now apply Theorem 1 to antiderivatives .

1 Indeed, any J can be enlarged to include p, so (3) applies to it. Note that in (3) we may

as well vary x inside any set of the form I ∩Gp(δ).
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Theorem 2. Let the functions fn : E
1 → E, n = 1, 2, . . . , have antideriva-

tives , Fn =
∫

fn, on I. Suppose E is complete and fn → f (uniformly) on

each finite subinterval J ⊆ I, with f finite there. Then
∫

f exists on I, and
∫ x

p

f =

∫ x

p

lim
n→∞

fn = lim
n→∞

∫ x

p

fn for any p, x ∈ I. (6)

Proof. Fix any p ∈ I. By Note 2 in §5, we may choose

Fn(x) =

∫ x

p

fn for x ∈ I.

Then Fn(p) =
∫ p

p
fn = 0, and so limn→∞ Fn(p) = 0 exists, as required in The-

orem 1(a).

Also, by definition, each Fn is relatively continuous and finite on I and
differentiable, with F ′

n = fn, on I − Qn. The countable sets Qn need not be
the same, so we replace them by

Q =

∞
⋃

n=1

Qn

(including in Q also the endpoints of I, if any). Then Q is countable (see
Chapter 1, §9, Theorem 2), and I − Q ⊆ I − Qn, so all Fn are differentiable
on I −Q, with F ′

n = fn there.

Additionally, by assumption,

fn → f (uniformly)

on finite subintervals J ⊆ I. Hence

F ′
n → f (uniformly) on J −Q

for all such J , and so the conditions of Theorem 1 are satisfied.

By that theorem, then,

F =

∫

f = limFn exists on I

and, recalling that

Fn(x) =

∫ x

p

fn,

we obtain for x ∈ I
∫ x

p

f = F (x)− F (p) = limFn(x)− limFn(p) = limFn(x)− 0 = lim

∫ x

p

fn.

As p ∈ I was arbitrary, and f = lim fn (by assumption), all is proved. �
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Note 2. By Theorem 1, the convergence
∫ x

p

fn →
∫ x

p

f (i.e., Fn → F )

is uniform in x (with p fixed), on each finite subinterval J ⊆ I.
We now “translate” Theorems 1 and 2 into the language of series.

Corollary 1. Let E and the functions Fn : E
1 → E be as in Theorem 1.

Suppose the series
∑

Fn(p)

converges for some p ∈ I, and
∑

F ′
n

converges uniformly on J −Q, for each finite subinterval J ⊆ I.
Then

∑

Fn converges uniformly on each such J , and

F =

∞
∑

n=1

Fn

is differentiable on I −Q, with

F ′ =

( ∞
∑

n=1

Fn

)′
=

∞
∑

n−1

F ′
n there. (7)

In other words, the series can be differentiated termwise.

Proof. Let

sn =
n
∑

k=1

Fk, n = 1, 2, . . . ,

be the partial sums of
∑

Fn. From our assumptions, it then follows that the
sn satisfy all conditions of Theorem 1. (Verify!) Thus the conclusions of Theo-
rem 1 hold, with Fn replaced by sn.

We have F = lim sn and F ′ = (lim sn)
′ = lim s′n, whence (7) follows. �

Corollary 2. If E and the fn are as in Theorem 2 and if
∑

fn converges

uniformly to f on each finite interval J ⊆ I, then
∫

f exists on I, and

∫ x

p

f =

∫ x

p

∞
∑

n=1

fn =
∞
∑

n=1

∫ x

p

fn for any p, x ∈ I. (8)

Briefly, a uniformly convergent series can be integrated termwise.
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Theorem 3 (power series). Let r be the convergence radius of

∑

an(x− p)n, an ∈ E, p ∈ E1.

Suppose E is complete. Set

f(x) =
∞
∑

n=0

an(x− p)n on I = (p− r, p+ r).

Then the following are true:

(i) f is differentiable and has an exact antiderivative on I.

(ii) f ′(x) =
∞
∑

n=1

nan(x− p)n−1 and

∫ x

p

f =

∞
∑

n=0

an
n+ 1

(x− p)n+1, x ∈ I.

(iii) r is also the convergence radius of the two series in (ii).

(iv)

∞
∑

n=0

an(x− p)n is exactly the Taylor series for f(x) on I about p.

Proof. We prove (iii) first.

By Theorem 6 of Chapter 4, §13, r = 1/d, where

d = lim n
√
an.

Let r′ be the convergence radius of
∑

nan(x− p)n−1, so

r′ =
1

d′
with d′ = lim n

√
nan.

However, lim n
√
n = 1 (see §3, Example (e)). It easily follows that

d′ = lim n
√
nan = 1 · lim n

√
an = d.2

Hence r′ = 1/d′ = 1/d = r.

The convergence radius of
∑ an

n+ 1
(x− p)n+1 is determined similarly. Thus

(iii) is proved.

Next, let

fn(x) = an(x− p)n and Fn(x) =
an
n+ 1

(x− p)n+1, n = 0, 1, 2, . . . .

Then the Fn are differentiable on I, with F ′
n = fn there. Also, by Theorems 6

and 7 of Chapter 4, §13, the series
∑

F ′
n =

∑

an(x− p)n

2 For a proof, treat d and d′ as subsequential limits (Chapter 4, §16, Theorem 1; Chapter 2,

§13, Problem 4).
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converges uniformly on each closed subinterval J ⊆ I = (p− r, p+ r).3 Thus
the functions Fn satisfy all conditions of Corollary 1, with Q = ∅, and the fn
satisfy Corollary 2. By Corollary 1, then,

F =
∞
∑

n=1

Fn

is differentiable on I, with

F ′(x) =
∞
∑

n=1

F ′
n(x) =

∞
∑

n=1

an(x− p)n = f(x)

for all x ∈ I. Hence F is an exact antiderivative of f on I, and (8) yields the
second formula in (ii).

Quite similarly, replacing Fn and F by fn and f , one shows that f is differ-
entiable on I, and the first formula in (ii) follows. This proves (i) as well.

Finally, to prove (iv), we apply (i)–(iii) to the consecutive derivatives of f
and obtain

f (k)(x) =

∞
∑

n=k

n(n− 1) · · · (n− k + 1)an(x− p)n−k

for each x ∈ I and k ∈ N .

If x = p, all terms vanish except the first term (n = k), i.e., k! ak. Thus
f (k)(p) = k! ak, k ∈ N . We may rewrite it as

an =
f (n)(p)

n!
, n = 0, 1, 2, . . . ,

since f (0)(p) = f(p) = a0. Assertion (iv) now follows since

f(x) =

∞
∑

n=0

an(x− p)n =

∞
∑

n=0

f (n)(p)

n!
(x− p)n, x ∈ I, as required. �

Note 3. If
∑

an(x− p)n converges also for x = p− r or x = p+ r, so does
the integrated series

∑

an
(x− p)n+1

n+ 1

since we may include such x in I. However, the derived series
∑

nan(x−p)n−1

need not converge at such x. (Why?) For example (see §6, Problem 9), the
expansion

ln(1 + x) = x− x2

2
+
x3

3
− · · ·

3 For our present theorem, it suffices to show that it holds on any closed globe J = Gp(δ),

δ < r. We may therefore limit ourselves to such J (see Note 1).
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converges for x = 1 but the derived series

1− x+ x2 − · · ·

does not.

In this respect, there is the following useful rule for functions f : E1 → Em

(∗Cm).

Corollary 3. Let a function f : E1 → Em (∗Cm) be relatively continuous on

[p, x0] (or [x0, p]), x0 6= p.4 If

f(x) =

∞
∑

n=0

an(x− p)n for p ≤ x < x0 (respectively, x0 < x ≤ p),

and if
∑

an(x0 − p)n converges, then necessarily

f(x0) =

∞
∑

n=0

an(x0 − p)n.

The proof is sketched in Problems 4 and 5.

Thus in the above example, f(x) = ln(1 + x) defines a continuous function
on [0, 1], with

f(x) =
∞
∑

n=1

(−1)n−1 x
n

n
on [0, 1].

We gave a direct proof in §6, Problem 9. However, by Corollary 3, it suffices
to prove this for [0, 1), which is much easier. Then the convergence of

∞
∑

n=1

(−1)n−1

n

yields the result for x = 1 as well.

Problems on Convergence in Differentiation and Integration

1. Complete all proof details in Theorems 1 and 3, Corollaries 1 and 2, and
Note 3.

2. Show that assumptions (a) and (c) in Theorem 1 can be replaced by
Fn → F (pointwise) on I. (In this form, the theorem applies to incom-

plete spaces E as well.)
[Hint: Fn → F (pointwise), together with formula (3), implies Fn → F (uniformly)

on I.]

4 Relative continuity at x0 suffices.
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3. Show that Theorem 1 fails without assumption (b), even if Fn → F
(uniformly) and if F is differentiable on I.
[Hint: For a counterexample, try Fn(x) =

1
n
sinnx, on any nondegenerate I. Verify

that Fn → 0 (uniformly), yet (b) and assertion (iii) fail.]

4. Prove Abel’s theorem (Chapter 4, §13, Problem 15) for series
∑

an(x− p)n,

with all an in Em (∗or in Cm) but with x, p ∈ E1.
[Hint: Split an(x− p)n into components.]

5. Prove Corollary 3.
[Hint: By Abel’s theorem (see Problem 4), we may put

∞∑

n=0

an(x− p)n = F (x)

uniformly on [p, x0] (respectively, [x0, p]). This implies that F is relatively contin-

uous at x0. (Why?) So is f , by assumption. Also f = F on [p, x0) ((x0, p]). Show
that

f(x0) = lim f(x) = limF (x) = F (x0)

as x → x0 from the left (right).]

6. In the following cases, find the Taylor series of F about 0 by integrating
the series of F ′. Use Theorem 3 and Corollary 3 to find the convergence
radius r and to investigate convergence at −r and r. Use (b) to find a
formula for π.

(a) F (x) = ln(1 + x);

(b) F (x) = arctanx;

(c) F (x) = arcsinx.

7. Prove that
∫ x

0

ln(1− t)
t

dt =
∞
∑

n=1

xn

n2
for x ∈ [−1, 1].

[Hint: Use Theorem 3 and Corollary 3. Take derivatives of both sides.]

§10. Sufficient Condition of Integrability. Regulated Functions

In this section, we shall determine a large family of functions that do have
antiderivatives. First, we give a general definition, valid for any range space
(T, p) (not necessarily E). The domain space remains E1.
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Definition 1.

A function f : E1 → (T, p) is said to be regulated on an interval I ⊆ E1,
with endpoints a < b, iff the limits f(p−) and f(p+), other than ±∞,1

exist at each p ∈ I. However, at the endpoints a, b, if in I, we only
require f(a+) and f(b−) to exist.

Examples.

(a) If f is relatively continuous and finite on I, it is regulated.

(b) Every real monotone function is regulated (see Chapter 4, §5, Theorem 1).

(c) If f : E1 → En (∗Cn) has bounded variation on I, it is regulated (§7,
Theorem 4).2

(d) The characteristic function of a set B, denoted CB , is defined by

CB(x) = 1 if x ∈ B and CB = 0 on −B.

For any interval J ⊆ E1, CJ is regulated on E1.

(e) A function f is called a step function on I iff I can be represented as the
union, I =

⋃

k Ik, of a sequence of disjoint intervals Ik such that f is con-
stant and 6= ±∞ on each Ik. Note that some Ik may be singletons , {p}.3

If the number of the Ik is finite, we call f a simple step function.

When the range space T is E, we can give the following convenient
alternative definition. If, say, f = ak 6= ±∞ on Ik, then

f =
∑

k

akCIk on I,

where CIk is as in (d). Note that
∑

k akCIk(x) always exists for disjoint
Ik. (Why?)

Each simple step function is regulated . (Why?)

Theorem 1. Let the functions f, g, h be real or complex (or let f, g be vector

valued and h scalar valued).

If they are regulated on I, so are f ± g, fh, and |f |; so also is f/h if h is

bounded away from 0 on I, i .e., (∃ ε > 0) |h| ≥ ε on I.

The proof, based on the usual limit properties, is left to the reader.

We shall need two lemmas. One is the famous Heine–Borel lemma.

1 This restriction is necessary in integration only, in the case T = E1 or T = E∗.
2 Actually, this applies to any f : E1 → E, with E complete and Vf [I] < +∞ (Problem 7).
3 The endpoints of the Ik may be treated as such degenerate intervals.
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Lemma 1 (Heine–Borel). If a closed interval A = [a, b] in E1 (or En) is

covered by open sets Gi (i ∈ I), i.e.,

A ⊆
⋃

i∈I

Gi,

then A can be covered by a finite number of these Gi.

The proof was sketched in Problem 10 of Chapter 4, §6.
Note 1. This fails for nonclosed intervals A. For example, let

A = (0, 1) ⊆ E1 and Gn =
( 1

n
, 1

)

.

Then

A =

∞
⋃

n=1

Gn (verify!), but not A ⊆
m
⋃

n=1

Gn

for any finite m. (Why?)

The lemma also fails for nonopen sets Gi. For example, cover A by singletons

{x}, x ∈ A. Then none of the {x} can be dropped!

Lemma 2. If a function f : E1 → T is regulated on I = [a, b], then f can be

uniformly approximated by simple step functions on I.

That is , for any ε > 0, there is a simple step function g, with ρ(f, g) ≤ ε
on I; hence

sup
x∈I

ρ(f(x), g(x)) ≤ ε.

Proof. By assumption, f(p−) exists for each p ∈ (a, b], and f(p+) exists for
p ∈ [a, b), all finite.

Thus, given ε > 0 and any p ∈ I, there is Gp(δ) (δ depending on p) such
that ρ(f(x), r) < ε whenever r = f(p−) and x ∈ (p− δ, p), and ρ(f(x), s) < ε
whenever s = f(p+) and x ∈ (p, p+ δ); x ∈ I.

We choose such a Gp(δ) for every p ∈ I. Then the open globes Gp = Gp(δ)
cover the closed interval I = [a, b], so by Lemma 1, I is covered by a finite

number of such globes, say,

I ⊆
n
⋃

k=1

Gpk
(δk), a ∈ Gp1

, a ≤ p1 < p2 < · · · < pn ≤ b.

We now define the step function g on I as follows.

If x = pk, we put

g(x) = f(pk), k = 1, 2, . . . , n.

If x ∈ [a, p1), then
g(x) = f(p−1 ).
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If x ∈ (p1, p1 + δ1), then
g(x) = f(p+1 ).

More generally, if x is in G¬pk
(δk) but in none of the Gpi

(δi), i < k, we put

g(x) = f(p−k ) if x < pk

and
g(x) = f(p+k ) if x > pk.

Then by construction, ρ(f, g) < ε on each Gpk
, hence on I. �

∗Note 2. If T is complete, we can say more: f is regulated on I = [a, b] iff
f is uniformly approximated by simple step functions on I. (See Problem 2.)

Theorem 2. If f : E1 → E is regulated on an interval I ⊆ E1 and if E is

complete, then
∫

f exists on I, exact at every continuity point of f in I0.

In particular, all continuous maps f : E1 → En (∗Cn) have exact primitives.

Proof. In view of Problem 14 of §5, it suffices to consider closed intervals.

O

Y

Xa c d b

c

d

Figure 25

Thus let I = [a, b], a < b, in
E1. Suppose first that f is the char-
acteristic function CJ of a subinter-
val J ⊆ I with endpoints c and d
(a ≤ c ≤ d ≤ b), so f = 1 on J ,
and f = 0 on I − J . We then define
F (x) = x on J , F = c on [a, c], and
F = d on [d, b] (see Figure 25). Thus
F is continuous (why?), and F ′ = f
on I − {a, b, c, d} (why?). Hence
F =

∫

f on I; i.e., characteristic func-
tions are integrable.

Then, however, so is any simple step function

f =
m
∑

k=1

akCIk ,

by repeated use of Corollary 1 in §5.4
Finally, let f be any regulated function on I. Then by Lemma 2, for any

εn = 1
n , there is a simple step function gn such that

sup
x∈I
|gn(x)− f(x)| ≤

1

n
, n = 1, 2, . . . .

As 1
n
→ 0, this implies that gn → f (uniformly) on I (see Chapter 4, §12,

Theorem 1). Also, by what was proved above, the step functions gn have

4 The corollary applies here also if the ak are vectors (CIk is scalar valued).
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antiderivatives, hence so has f (Theorem 2 in §9); i.e., F =
∫

f exists on I, as
claimed. Moreover,

∫

f is exact at continuity points of f in I0 (Problem 10 in
§5). �

In view of the sufficient condition expressed in Theorem 2, we can now re-
place the assumption “

∫

f exists” in our previous theorems by “f is regulated”
(provided E is complete). For example, let us now review Problems 7 and 8
in §5.
Theorem 3 (weighted law of the mean). Let f : E1 → E (E complete) and

g : E1 → E1 be regulated on I = [a, b], with g ≥ 0 on I.5 Then the following

are true:

(i) There is a finite c ∈ E (called the “g-weighted mean of f on I”) such

that
∫ b

a
gf = c

∫ b

a
g.

(ii) If f , too, is real and has the Darboux property on I, then c = f(q) for

some q ∈ I.

Proof. Indeed, as f and g are regulated, so is gf by Theorem 1. Hence by
Theorem 2,

∫

f and
∫

gf exist on I. The rest follows as in Problems 7 and 8
of §5. �

Theorem 4 (second law of the mean). Suppose f and g are real , f is monotone

with f =
∫

f ′ on I, and g is regulated on I; I = [a, b]. Then

∫ b

a

fg = f(a)

∫ q

a

g + f(b)

∫ b

q

g for some q ∈ I. (1)

Proof. To fix ideas, let f↑; i.e., f ′ ≥ 0 on I.

The formula f =
∫

f ′ means that f is relatively continuous (hence regulated)
on I and differentiable on I −Q (Q countable). As g is regulated,

∫ x

a

g = G(x)

does exist on I, so G has similar properties, with G(a) =
∫ a

a
g = 0.

By Theorems 1 and 2,
∫

fG′ =
∫

fg exists on I. (Why?) Hence by
Corollary 5 in §5, so does

∫

Gf ′, and we have

∫ b

a

fg =

∫ b

a

fG′ = f(x)G(x)
∣

∣

∣

b

a
−

∫ b

a

Gf ′ = f(b)G(b)−
∫ b

a

Gf ′.

Now G has the Darboux property on I (being relatively continuous), and

5 One can also assume g ≤ 0 on I; in this case, simply apply the theorem to −g.
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f ′ ≥ 0. Also,
∫

G and
∫

Gf ′ exist on I. Thus by Problems 7 and 8 in §5,
∫ b

a

Gf ′ = G(q)

∫ b

a

f ′ = G(q)f(x)
∣

∣

∣

b

a
, q ∈ I.

Combining all, we obtain the required result (1) since
∫

fg = f(b)G(b)−
∫ b

a

Gf ′

= f(b)G(b)− f(b)G(q) + f(a)G(q)

= f(b)

∫ b

q

g + f(a)

∫ q

a

g. �

We conclude with an application to infinite series. Given f : E1 → E, we
define

∫ ∞

a

f = lim
x→+∞

∫ x

a

f and

∫ a

−∞
f = lim

x→−∞

∫ a

x

f

if these integrals and limits exist.

We say that
∫∞
a
f and

∫ a

−∞ f converge iff they exist and are finite.

Theorem 5 (integral test of convergence). If f : E1 → E1 is nonnegative and

nonincreasing on I = [a, +∞), then

∫ ∞

a

f converges iff

∞
∑

n=1

f(n) does .

Proof. As f↓, f is regulated, so
∫

f exists on I = [a, +∞). We fix some
natural k ≥ a and define

F (x) =

∫ x

k

f for x ∈ I.

By Theorem 3(iii) in §5, F↑ on I. Thus by monotonicity,

lim
x→+∞

F (x) = lim
x→+∞

∫ x

k

f =

∫ ∞

k

f

exists in E∗; so does
∫ k

a
f . Since

∫ x

a

f =

∫ k

a

f +

∫ x

k

f,

where
∫ k

a
f is finite by definition, we have

∫ ∞

a

f < +∞ iff

∫ ∞

k

f < +∞.
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Similarly,
∞
∑

n=1

f(n) < +∞ iff

∞
∑

n=k

f(n) < +∞.

Thus we may replace “a” by “k.”

Let

In = [n, n+ 1), n = k, k + 1, . . . ,

and define two step functions, g and h, constant on each In, by

h = f(n) and g = f(n+ 1) on In, n ≥ k.

Since f↓, we have g ≤ f ≤ h on all In, hence on J = [k, +∞). Therefore,

∫ x

k

g ≤
∫ x

k

f ≤
∫ x

k

h for x ∈ J .

Also,
∫ m

k

h =

m−1
∑

n=k

∫ n+1

n

h =

m−1
∑

n=k

f(n),

since h = f(n) (constant) on [n, n+ 1), and so

∫ n+1

n

h(x) dx = f(n)

∫ n+1

n

1 dx = f(n) · x
∣

∣

∣

n+1

n
= f(n)(n+ 1− n) = f(n).

Similarly,
∫ m

k

g =
m−1
∑

n=k

f(n+ 1) =
m
∑

n=k+1

f(n).

Thus we obtain

m
∑

n=k+1

f(n) =

∫ m

k

g ≤
∫ m

k

f ≤
∫ m

k

h =

m−1
∑

n=k

f(n),

or, letting m→∞,

∞
∑

n=k+1

f(n) ≤
∫ ∞

k

f ≤
∞
∑

n=k

f(n).

Hence
∫∞
k
f is finite iff

∞
∑

n=1

f(n) is, and all is proved. �
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Examples (continued).

(f) Consider the hyperharmonic series

∑ 1

np
(Problem 2 of Chapter 4, §13).

Let

f(x) =
1

xp
, x ≥ 1.

If p = 1, then f(x) = 1/x, so
∫ x

1
f = lnx→ +∞ as x → +∞. Hence

∑

1/n diverges.

If p 6= 1, then
∫ ∞

1

f = lim
x→+∞

∫ x

1

f = lim
x→+∞

x1−p

1− p
∣

∣

∣

x

1
,

so
∫∞
1
f converges or diverges according as p > 1 or p < 1, and the same

applies to the series
∑

1/np.

(g) Even nonregulated functions may be integrable. Such is Dirichlet’s func-

tion (Example (c) in Chapter 4, §1). Explain, using the countability of
the rationals.

Problems on Regulated Functions

In Problems 2, 5, 6, and 8, we drop the restriction that f(p−) and f(p+) are
finite. We only require them to exist in (T, p). If T = E∗, a suitable metric
for E∗ is presupposed.

1. Complete all details in the proof of Theorems 1–3.

1′ Explain Examples (a)–(g).

∗2. Prove Note 2. More generally, assuming T to be complete, prove that if

gn → f (uniformly) on I = [a, b]

and if the gn are regulated on I, so is f .
[Hint: Fix p ∈ (a, b]. Use Theorem 2 of Chapter 4, §11 with

X = [a, p], Y = N ∪ {+∞}, q = +∞, and F (x, n) = gn(x).

Thus show that

f(p−) = lim
x→p−

lim
n→∞

gn(x) exists;

similarly for f(p+).]

3. Given f, g : E1 → E1, define f ∨ g and f ∧ g as in Problem 12 of Chap-
ter 4, §8. Using the hint given there, show that f ∨ g and f ∧ g are
regulated if f and g are.
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4. Show that the function g ◦ f need not be regulated even if g and f are.
[Hint: Let

f(x) = x · sin 1

x
, g(x) =

x

|x| , and f(0) = g(0) = 0 with I = [0, 1].

Proceed.]

⇒5. Given f : E1 → (T, ρ), regulated on I, put

j(p) = max
{

ρ
(

f(p), f(p−)
)

, ρ
(

f(p), f(p+)
)

, ρ
(

f(p−), f(p+)
)}

;

call it the jump at p.

(i) Prove that f is discontinuous at p ∈ I0 iff j(p) > 0, i.e., iff

(∃n ∈ N) j(p) >
1

n
.

(ii) For a fixed n ∈ N , prove that a closed subinterval J ⊆ I contains
at most finitely many x with j(x) > 1/n.
[Hint: Otherwise, there is a sequence of distinct points xm ∈ J, j(xm) > 1

n
,

hence a subsequence xmk
→ p ∈ J. (Why?) Use Theorem 1 of Chapter 4, §2,

to show that f(p−) or f(p+) fails to exist.]

⇒6. Show that if f : E1 → (T, ρ) is regulated on I, then it has at most count-
ably many discontinuities in I; all are of the “jump” type (Problem 5).
[Hint: By Problem 5, any closed subinterval J ⊆ I contains, for each n, at most

finitely many discontinuities x with j(x) > 1/n. Thus for n = 1, 2, . . . , obtain

countably many such x.]

7. Prove that if E is complete, all maps f : E1 → E, with Vf [I] < +∞ on
I = [a, b], are regulated on I.
[Hint: Use Corollary 1, Chapter 4, §2, to show that f(p−) and f(p+) exist.

Say,

xn → p with xn < p (xn, p ∈ I),

but {f(xn)} is not Cauchy. Then find a subsequence, {xnk
}↑, and ε > 0 such that

|f(xnk+1
)− f(xnk

) |≥ ε, k = 1, 3, 5, . . . .

Deduce a contradiction to Vf [I] < +∞.

Provide a similar argument for the case xn > p.]

8. Prove that if f : E1 → (T, ρ) is regulated on I, then f [B] (the closure
of f [B]) is compact in (T, ρ) whenever B is a compact subset of I.

[Hint: Given {zm} in f [B], find {ym} ⊆ f [B] such that ρ(zm, ym) → 0 (use

Theorem 3 of Chapter 3, §16). Then “imitate” the proof of Theorem 1 in Chap-
ter 4, §8 suitably. Distinguish the cases:

(i) all but finitely many xm are < p;

(ii) infinitely many xm exceed p; or

(iii) infinitely many xm equal p.]
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§11. Integral Definitions of Some Functions

By Theorem 2 in §10,
∫

f exists on I whenever the function f : E1 → E is
regulated on I, and E is complete. Hence whenever such an f is given, we can
define a new function F by setting

F =

∫ x

a

f

on I for some a ∈ I. This is a convenient method of obtaining new continuous
functions, differentiable on I−Q (Q countable). We shall now apply it to obtain
new definitions of some functions previously defined in a rather strenuous step-
by-step manner.

I. Logarithmic and Exponential Functions. From our former defini-
tions, we proved that

lnx =

∫ x

1

1

t
dt, x > 0.

Now we want to treat this as a definition of logarithms. We start by setting

f(t) =
1

t
, t ∈ E1, t 6= 0,

and f(0) = 0.

Then f is continuous on I = (0, +∞) and J = (−∞, 0), so it has an exact

primitive on I and J separately (not on E1). Thus we can now define the log
function on I by

∫ x

1

1

t
dt = log x (also written lnx) for x > 0. (1)

By the very definition of an exact primitive, the log function is continuous
and differentiable on I = (0, +∞); its derivative on I is f . Thus we again have
the symbolic formula

(log x)′ =
1

x
, x > 0.

If x < 0, we can consider log(−x). Then the chain rule (Theorem 3 of §1)
yields

(log(−x))′ = 1

x
. (Verify!)

Hence

(log |x|)′ = 1

x
for x 6= 0. (2)

Other properties of logarithms easily follow from (1). We summarize them
now.
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Theorem 1.

(i) log 1 =

∫ 1

1

1

t
dt = 0.

(ii) log x < log y whenever 0 < x < y.

(iii) lim
x→+∞

log x = +∞ and lim
x→0+

log x = −∞.

(iv) The range of log is all of E1.

(v) For any positive x, y ∈ E1,

log(xy) = log x+ log y and log
(x

y

)

= log x− log y.

(vi) log ar = r · log a, a > 0, r ∈ N .

(vii) log e = 1, where e = lim
n→∞

(

1 +
1

n

)n

.

Proof.

(ii) By (2), (log x)′ > 0 on I = (0, +∞), so log x is increasing on I.

(iii) By Theorem 5 in §10,

lim
x→+∞

log x =

∫ ∞

1

1

t
dt = +∞

since
∞
∑

n=1

1

n
= +∞ (Chapter 4, §13, Example (b)).

Hence, substituting y = 1/x, we obtain

lim
y→0+

log y = lim
x→+∞

log
1

x
.

However, by Theorem 2 in §5 (substituting s = 1/t),

log
1

x
=

∫ 1/x

1

1

t
dt = −

∫ x

1

1

s
ds = − log x.

Thus

lim
y→0+

log y = lim
x→+∞

log
1

x
= − lim

x→+∞
log x = −∞

as claimed. (We also proved that log 1
x = − log x.)

(iv) Assertion (iv) now follows by the Darboux property (as in Chapter 4, §9,
Example (b)).
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(v) With x, y fixed, we substitute t = xs in
∫ xy

1

1

t
dt = log xy

and obtain

log xy =

∫ xy

1

1

t
dt =

∫ y

1/x

1

s
ds

=

∫ 1

1/x

1

s
ds+

∫ y

1

1

s
ds

= − log
1

x
+ log y

= log x+ log y.

Replacing y by 1/y here, we have

log
x

y
= log x+ log

1

y
= log x− log y.

Thus (v) is proved, and (vi) follows by induction over r.

(vii) By continuity,

log e = lim
x→e

log x = lim
n→∞

log
(

1 +
1

n

)n

= lim
n→∞

log(1 + 1/n)

1/n
,

where the last equality follows by (vi). Now, L’Hôpital’s rule yields

lim
x→0

log(1 + x)

x
= lim

x→0

1

1 + x
= 1.

Letting x run over 1
n → 0, we get (vii). �

Note 1. Actually, (vi) holds for any r ∈ E1, with ar as in Chapter 2,
§§11–12. One uses the techniques from that section to prove it first for rational
r, and then it follows for all real r by continuity. However, we prefer not to use
this now.

Next, we define the exponential function (“exp”) to be the inverse of the
log function. This inverse function exists; it is continuous (even differentiable)
and strictly increasing on its domain (by Theorem 3 of Chapter 4, §9 and
Theorem 3 of Chapter 5, §2) since the log function has these properties. From
(log x)′ = 1/x we get, as in §2,

(expx)′ = expx (cf. §2, Example (B)). (3)

The domain of the exponential is the range of its inverse, i.e., E1 (cf. Theo-
rem 1(iv)). Thus expx is defined for all x ∈ E1. The range of exp is the domain
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of log, i.e., (0, +∞). Hence expx > 0 for all x ∈ E1. Also, by definition,

exp(log x) = x for x > 0, (4)

exp 0 = 1 (cf. Theorem 1(i)), and (5)

exp r = er for r ∈ N. (6)

Indeed, by Theorem 1(vi) and (vii), log er = r · log e = r. Hence (6) follows.
If the definitions and rules of Chapter 2, §§11–12 are used, this proof even
works for any r by Note 1. Thus our new definition of exp agrees with the old

one.

Our next step is to give a new definition of ar, for any a, r ∈ E1 (a > 0).
We set

ar = exp(r · log a) or (7)

log ar = r · log a (r ∈ E1). (8)

In case r ∈ N , (8) becomes Theorem 1(vi). Thus for natural r, our new
definition of ar is consistent with the previous one. We also obtain, for a, b > 0,

(ab)r = arbr; ars = (ar)s; ar+s = aras; (r, s ∈ E1). (9)

The proof is by taking logarithms. For example,

log(ab)r = r log ab = r(log a+ log b) = r · log a+ r · log b
= log ar + log br = log(arbr).

Thus (ab)r = arbr. Similar arguments can be given for the rest of (9) and other
laws stated in Chapter 2, §§11–12.

We can now define the exponential to the base a (a > 0) and its inverse, loga,
as before (see the example in Chapter 4, §5 and Example (b) in Chapter 4, §9).
The differentiability of the former is now immediate from (7), and the rest
follows as before.

II. Trigonometric Functions. These shall now be defined in a precise
analytic manner (not based on geometry).

We start with an integral definition of what is usually called the principal

value of the arcsine function,

arcsinx =

∫ x

0

1√
1− t2

dt.

We shall denote it by F (x) and set

f(x) =
1√

1− x2
on I = (−1, 1).

(F = f = 0 on E1 − I.) Thus by definition, F =
∫

f on I.
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Note that
∫

f exists and is exact on I since f is continuous on I. Thus

F ′(x) = f(x) =
1√

1− x2
> 0 for x ∈ I,

and so F is strictly increasing on I. Also, F (0) =
∫ 0

0
f = 0.

We also define the number π by setting

π

2
= 2 arcsin

√

1

2
= 2F (c) = 2

∫ c

0

f, c =

√

1

2
. (10)

Then we obtain the following theorem.

Theorem 2. F has the limits

F (1−) =
π

2
and F (−1+) = −π

2
.

Thus F becomes relatively continuous on I = [−1, 1] if one sets

F (1) =
π

2
and F (−1) = −π

2
,

i .e.,

arcsin 1 =
π

2
and arcsin(−1) = −π

2
. (11)

Proof. We have

F (x) =

∫ x

0

f =

∫ c

0

f +

∫ x

c

f, c =

√

1

2
.

By substituting s =
√
1− t2 in the last integral and setting, for brevity, y =√

1− x2 , we obtain
∫ x

c

f =

∫ x

c

1√
1− t2

dt =

∫ c

y

1√
1− s2

ds = F (c)− F (y). (Verify!)

Now as x → 1−, we have y =
√
1− x2 → 0, and hence F (y) → F (0) = 0 (for

F is continuous at 0). Thus

F (1−) = lim
x→1−

F (x) = lim
y→0

(

∫ c

0

f +

∫ c

y

f
)

=

∫ c

0

f + F (c) = 2

∫ c

0

f =
π

2
.

Similarly, one gets F (−1+) = −π/2. �

The function F as redefined in Theorem 2 will be denoted by F0. It is
a primitive of f on the closed interval I (exact on I). Thus F0(x) =

∫ x

0
f ,

−1 ≤ x ≤ 1, and we may now write

π

2
=

∫ 1

0

f and π =

∫ 0

−1

f +

∫ 1

0

f =

∫ 1

−1

f .
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Note 2. In classical analysis, the last integrals are regarded as so-called
improper integrals, i.e., limits of integrals rather than integrals proper. In our
theory, this is unnecessary since F0 is a genuine primitive of f on I.

For each integer n (negatives included), we now define Fn : E
1 → E1 by

Fn(x) = nπ + (−1)nF0(x) for x ∈ I = [−1, 1],
Fn = 0 on − I.

(12)

Fn is called the nth branch of the arcsine. Figure 26 shows the graphs of F0

and F1 (that of F1 is dotted). We now obtain the following theorem.

Theorem 3.

(i) Each Fn is differentiable on I = (−1, 1) and relatively continuous on

I = [−1, 1].
(ii) Fn is increasing on I if n is even, and decreasing if n is odd .

(iii) F ′
n(x) =

(−1)n√
1− x2

on I.

(iv) Fn(−1) = Fn−1(−1) = nπ − (−1)nπ
2
; Fn(1) = Fn−1(1) = nπ + (−1)nπ

2
.

O

Y

X

−π

2

π

2

3π

2

−1 1

Figure 26

The proof is obvious from (12) and the
properties of F0. Assertion (iv) ensures
that the graphs of the Fn add up to one

curve. By (ii), each Fn is one to one
(strictly monotone) on I. Thus it has a
strictly monotone inverse on the interval
Jn = Fn[[−1, 1]], i.e., on the Fn-image of
I. For simplicity, we consider only

J0 =
[

−π
2
,
π

2

]

and J1 =
[π

2
,
3π

2

]

,

as shown on the Y -axis in Figure 26. On
these, we define for x ∈ J0

sinx = F−1
0 (x) (13)

and

cosx =
√

1− sin2 x, (13′)

and for x ∈ J1
sinx = F−1

1 (x) (14)

and

cosx = −
√

1− sin2 x. (14′)
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On the rest of E1, we define sinx and cosx periodically by setting

sin(x+ 2nπ) = sinx and cos(x+ 2nπ) = cosx, n = 0, ±1, ±2, . . . . (15)

Note that by Theorem 3(iv),

F−1
0

(π

2

)

= F−1
1

(π

2

)

= 1.

Thus (13) and (14) both yield sinπ/2 = 1 for the common endpoint π/2 of J0
and J1, so the two formulas are consistent. We also have

sin
(

−π
2

)

= sin
(3π

2

)

= −1,

in agreement with (15). Thus the sine and cosine functions (briefly, s and c)
are well defined on E1.

Theorem 4. The sine and cosine functions (s and c) are differentiable, hence
continuous , on all of E1, with derivatives s′ = c and c′ = −s; that is ,

(sinx)′ = cosx and (cosx)′ = − sinx.

Proof. It suffices to consider the intervals J0 and J1, for, by (15), all properties
of s and c repeat themselves, with period 2π, on the rest of E1.

By (13),

s = F−1
0 on J0 =

[

−π
2
,
π

2

]

,

where F0 is differentiable on I = (−1, 1). Thus Theorem 3 of §2 shows that s
is differentiable on J0 = (−π/2, π/2) and that

s′(q) =
1

F ′
0(p)

whenever p ∈ I and q = F0(p);

i.e., q ∈ J and p = s(q). However, by Theorem 3(iii),

F ′
0(p) =

1
√

1− p2
.

Hence

s′(q) =
√

1− sin2 q = cos q = c(q), q ∈ J.

This proves the theorem for interior points of J0 as far as s is concerned.

As

c =
√

1− s2 = (1− s2) 1
2 on J0 (by (13)),

we can use the chain rule (Theorem 3 in §1) to obtain

c′ =
1

2
(1− s2)− 1

2 (−2s)s′ = −s
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on noting that s′ = c = (1− s2) 1
2 on J0. Similarly, using (14), one proves that

s′ = c and c′ = −s on J1 (interior of J1).

Next, let q be an endpoint , say, q = π/2. We take the left derivative

s′−(q) = lim
x→q−

s(x)− s(q)
x− q , x ∈ J0.

By L’Hôpital’s rule, we get

s′−(q) = lim
x→q−

s′(x)

1
= lim

x→q−

c(x)

since s′ = c on J0. However, s = F−1
0 is left continuous at q (why?); hence so

is c =
√
1− s2. (Why?) Therefore,

s′−(q) = lim
x→q−

c(x) = c(q), as required.

Similarly, one shows that s′+(q) = c(q). Hence s′(q) = c(q) and c′(q) = −s(q),
as before. �

The other trigonometric functions reduce to s and c by their defining for-
mulas

tanx =
sinx

cosx
, cot x =

cosx

sinx
, secx =

1

cosx
, and cosecx =

1

sinx
,

so we shall not dwell on them in detail. The various trigonometric laws easily
follow from our present definitions; for hints, see the problems below.

Problems on Exponential and Trigonometric Functions

1. Verify formula (2).

2. Prove Note 1, as suggested (using Chapter 2, §§11–12).
3. Prove formulas (1) of Chapter 2, §§11–12 from our new definitions.

4. Complete the missing details in the proofs of Theorems 2–4.

5. Prove that

(i) sin 0 = sin(nπ) = 0;

(ii) cos 0 = cos(2nπ) = 1;

(iii) sin
π

2
= 1;

(iv) sin
(

−π
2

)

= −1;

(v) cos
(

±π
2

)

= 0;

(vi) | sinx| ≤ 1 and | cosx| ≤ 1 for x ∈ E1.
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6. Prove that

(i) sin(−x) = − sinx and

(ii) cos(−x) = cosx for x ∈ E1.

[Hint: For (i), let h(x) = sin x+sin(−x). Show that h′ = 0; hence h is constant, say,

h = q on E1. Substitute x = 0 to find q. For (ii), use (13)–(15).]

7. Prove the following for x, y ∈ E1:

(i) sin(x+ y) = sinx cos y + cosx sin y; hence sin
(

x+
π

2

)

= cosx.

(ii) cos(x+ y) = cosx cos y − sinx sin y; hence cos
(

x+
π

2

)

= − sinx.

[Hint for (i): Fix x, y and let p = x+ y. Define h : E1 → E1 by

h(t) = sin t cos(p− t) + cos t sin(p− t), t ∈ E1.

Proceed as in Problem 6. Then let t = x.]

8. With Jn as in the text, show that the sine increases on Jn if n is even
and decreases if n is odd. How about the cosine? Find the endpoints
of Jn.
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Abel’s convergence test, 247

Abel’s theorem for power series, 249, 322

Absolute value

in an ordered field, 26

in En, 64
in Euclidean spaces, 88

in normed linear spaces, 90

Absolutely continuous functions (weakly),

309

Absolutely convergent series of functions,

237

rearrangement of, 238
tests for, 239

Accumulation points, 115. See also Cluster

point

Additivity
of definite integrals, 282

of total variation, 301

of volume of intervals in En, 79

Alternating series, 248

Admissible change of variable, 165

Angle between vectors in En, 70

Antiderivative, 278. See also Integral, in-

definite

Antidifferentiation, 278. See also Integra-
tion

Arcs, 211

as connected sets, 214

endpoints of, 211
length of, 301, 311

rectifiable, 309
simple, 211

Archimedean field, see Field, Archimedean

Archimedean property, 43

Arcwise connected set, 211

Arithmetic-geometric mean, Gauss’s, 134

Associative laws

in a field, 23
of vector addition in En, 65

Axioms

of arithmetic in a field, 23
of a metric, 95

of order in an ordered field, 24

Basic unit vector in En, 64

Bernoulli inequalities, 33

Binary operations, 12. See also Functions

Binomial theorem, 34

Bolzano theorem, 205

Bolzano–Weierstrass theorem, 136

Boundary
of intervals in En, 77

of sets in metric spaces, 108

Bounded
functions on sets in metric spaces, 111

sequences in metric spaces, 111
sets in metric spaces, 109

sets in ordered fields, 36

variation, 303
left-bounded sets in ordered fields, 36

right-bounded sets in ordered fields, 36

totally bounded sets in a metric space,
188

uniformly bounded sequences of func-
tions, 234

C (the complex field), 80
complex numbers, 81; see also Complex

numbers

Cartesian coordinates in, 83
de Moivre’s formula, 84

imaginary numbers in, 81

imaginary unit in, 81
is not an ordered field, 82

polar coordinates in, 83
real points in, 81

real unit in, 81

Cn (complex n-space), 87
as a Euclidean space, 88

as a normed linear space, 91
componentwise convergence of sequences

in, 121
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dot products in, 87
standard norm in, 91

Cantor’s diagonal process, 21. See also

Sets

Cantor’s function, 186

Cantor’s principle of nested closed sets,

188

Cantor’s set, 120

Cartesian coordinates in C, 83

Cartesian product of sets (×), 2

intervals in En as Cartesian products of
intervals in E1, 76

Cauchy criterion
for function limits, 162

for uniform convergence of sequences of

functions, 231

Cauchy form of the remainder term of

Taylor expansions, 291

Cauchy sequences in metric spaces, 141

Cauchy’s convergence criterion for se-

quences in metric spaces, 143

Cauchy’s laws of the mean, 261

Cauchy-Schwarz inequality
in En, 67

in Euclidean spaces, 88

Center of an interval in En, 77

Change of variable, admissible, 165

Chain rule for differentiation of composite

functions, 255

Change of variables in definite integrals,

282

Characteristic functions of sets, 323

Clopen
sets in metric spaces, 103

Closed
curve, 211

globe in a metric space, 97

interval in an ordered field, 37
interval in En, 77

line segment in En, 72

sets in metric spaces, 103, 138

Closures of sets in metric spaces, 137

Closure laws

in a field, 23

in En, 65
of integers in a field, 35

of rationals in a field, 35

Cluster points

of sequences in E∗, 60
of sequences and sets in metric spaces,

115

Commutative laws
in a field, 23

of addition of vectors in En, 65

of inner products of vectors in En, 67

Compact sets, 186, 193

Cantor’s principle of nested closed sets,

188
are totally bounded, 188

in E1, 195

continuity on, 194
generalized Heine–Borel theorem, 193

Heine–Borel theorem, 324
sequentially, 186

Comparison test, 239

refined, 245

Complement of a set (−), 2

Complete
metric spaces, 143

ordered fields, 38; see also Field, com-

plete ordered

Completeness axiom, 38

Completion of metric spaces, 146

Complex exponential, 173

derivatives of the, 256

Complex field, see C

Complex functions, 170

Complex numbers, 81. See also C

conjugate of, 81

imaginary part of, 81
nth roots of, 85

polar form of, 83

real part of, 81
trigonometric form of, 83

Complex vector spaces, 87

Componentwise
continuity of functions, 172

convergence of sequences, 121

differentiation, 256
integration, 282

limits of functions, 172

Composite functions, 163

chain rule for derivatives of, 255

continuity of, 163

Concurrent sequences, 144

Conditionally convergent series of func-

tions, 237

rearrangement of, 250

Conjugate of complex numbers, 81

Connected sets, 212

arcs as, 214
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arcwise-, 211
curves as, 214

polygon-, 204

Continuous functions

on metric spaces, 149

differentiable functions are, 252
left, 153

relatively, 152

right, 153
uniformly, 197

(weakly) absolutely continuous, 309

Continuity. See also Continuous functions

componentwise, 172

in one variable, 174
jointly, 174

of addition and multiplication in E1, 168

of composite functions, 163
of inverse functions, 195, 207

of the exponential function, 184
of the logarithmic function, 208

of the power function, 209

of the standard metric on E1, 168
of the sum, product, and quotient of

functions, 170

on compact sets, 194
sequential criterion for, 161

uniform, 197

Contracting sequence of sets, 17

Contraction mapping, 198

Convergence of sequences of functions
Cauchy criterion for uniform, 231

convergence of integrals and derivatives,
315

pointwise, 228

uniform, 228

Convergence radius of power series, 243

Convergence tests for series
Abel’s test, 247

comparison test, 239

Dirichlet test, 248
integral test, 327

Leibniz test for alternating series, 248

ratio test, 241
refined comparison test, 245

root test, 241
Weierstrass M-test for functions, 240

Convergent

absolutely convergent series of functions,
237

conditionally convergent series of func-
tions, 237

sequences of functions, 228; see also

Limits of sequences of functions
sequences in metric spaces, 115

series of functions, 228; see also Limits

of series of functions

Convex sets, 204

piecewise, 204

Coordinate equations of a line in En, 72

Countable set, 18

rational numbers as a, 19

Countable union of sets, 20

Covering, open, 192

Cross product of sets (×), 2

Curves, 211

as connected sets, 214
closed, 211

length of, 300
parametric equations of, 212

tangent to, 257

Darboux property, 203

Bolzano theorem, 205

of the derivative, 265

de Moivre’s formula, 84

Definite integrals, 279
additivity of, 282

change of variables in, 282

dominance law for, 284
first law of the mean for, 285

integration by parts, 281

linearity of, 280
monotonicity law for, 284

weighted law of the mean for, 286, 326

Degenerate intervals in En, 78

Degree

of a monomial, 173
of a polynomial, 173

Deleted δ-globes about points in metric
spaces, 150

Dense subsets in metric spaces, 139

Density
of an ordered field, 45

of rationals in an Archimedean field, 45

Dependent vectors
in En, 69

Derivatives of functions on E1, 251
convergence of, 315

Darboux property of, 265

derivative of the exponential function,
264

derivative of the inverse function, 263
derivative of the logarithmic function,

263
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derivative of the power function, 264
with extended-real values, 259

left, 252

one-sided, 252
right, 252

Derived functions on E1, 251

nth, 252

Diagonal of an interval in En, 77

Diagonal process, Cantor’s, 21. See also

Sets

Diameter
of sets in metric spaces, 109

Difference

of elements of a field, 26
of sets (−), 2

Differentials of functions on E1, 288

of order n, 289

Differentiable functions on E1, 251
Cauchy’s laws of the mean, 261

cosine function, 337

are continuous, 252
exponential function, 333

infinitely, 292
logarithmic function, 332

n-times continuously, 292

n-times, 252
nowhere, 253

Rolle’s theorem, 261

sine function, 337

Differentiation, 251

chain rule for, 255

componentwise, 256
of power series, 319

rules for sums, products, and quotients,

256
termwise differentiation of series, 318

Directed

lines in En, 74
planes in En, 74

Direction vectors of lines in En, 71

Dirichlet function, 155, 329

Dirichlet test, 248

Disconnected sets, 212
totally, 217

Discontinuity points of functions on metric

spaces, 149

Discontinuous functions on metric spaces,

149

Discrete
metric, 96

metric space, 96

Disjoint sets, 2

Distance

between a point and a plane in En, 76

between sets in metric spaces, 110
between two vectors in En, 64

between two vectors in Euclidean spaces,

89
in normed linear spaces, 92

norm-induced, 92
translation-invariant, 92

Distributive laws

in En, 65

in a field, 24
of inner products of vectors in En, 67

of union and intersection of sets, 7

Divergent
sequences in metric spaces, 115

Domain

of a relation, 9
of a sequence, 15

space of functions on metric spaces, 149

Double limits of functions, 219, 221

Double sequence, 20, 222, 223

Dot product

in Cn, 87

in En, 64

Duality laws, de Morgan’s, 3. See also Sets

e (the number), 122, 165, 293

E1 (the real numbers), 23. See also Field,

complete ordered
associative laws in, 23

axioms of arithmetic in, 23

axioms of order in, 24
closure laws in, 23

commutative laws in, 23

continuity of addition and multiplication
in, 168

continuity of the standard metric on,
168

distributive law in, 24

inverse elements in, 24
monotonicity in, 24

neighborhood of a point in, 58

natural numbers in, 28
neutral elements in, 23

transitivity in, 24
trichotomy in, 24

En (Euclidean n-space), 63. See also Vec-

tors in En

convex sets in, 204

as a Euclidean space, 88
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as a normed linear space, 91
associativity of vector addition in, 65

additive inverses of vector addition, 65

basic unit vector in, 64
Bolzano-Weierstrass theorem, 136

Cauchy-Schwarz inequality in, 67
closure laws in, 65

commutativity of vector addition in, 65

componentwise convergence of sequences
in, 121

distributive laws in, 65

globe in, 76
hyperplanes in, 72; see also Planes in

En

intervals in, 76; see also Intervals in En

line segments in, 72; see also Line seg-

ments in En

linear functionals on, 74, 75; see also

Linear functionals on En

lines in, 71; see also Lines in En

neutral element of vector addition in, 65

planes in, 72; see also Planes in En

point in, 63

scalar of, 64

scalar product in, 64
sphere in, 76

standard metric in, 96

standard norm in, 91
triangle inequality of the absolute value

in, 67
triangle inequality of the distance in, 68

unit vector in, 65

vectors in, 63
zero vector in, 63

E∗ (extended real numbers), 53
as a metric space, 98

cluster point of a sequence in, 60
globes in, 98

indeterminate expressions in, 178

intervals in, 54
limits of sequences in, 58

metrics for, 99

neighborhood of a point in, 58
operations in, 177

unorthodox operations in, 180

Edge-lengths of an interval in En, 77

Elements of a set (∈), 1
Empty set (∅), 1
Endpoints

of an interval in En, 77

of line segments in En, 72

Equality of sets, 1

Equicontinuous functions, 236

Equivalence class relative to an equivalence

relation, 13
generator of an, 13

representative of an, 13

Equivalence relation, 12
equivalence class relative to an, 13

Euclidean n-space, see En

Euclidean spaces, 87
as normed linear spaces, 91

absolute value in, 88
Cn as a, 88

Cauchy-Schwarz inequality in, 88

distance in, 89
En as a, 88

line segments in, 89

lines in, 89
planes in, 89

triangle inequality in, 88

Exact primitive, 278

Existential quantifier (∃), 4
Expanding sequence of sets, 17

Exponential, complex, 173

Exponential function, 183, 333
continuity of the, 184

derivative of the, 264

inverse of the, 208

Extended real numbers, see E∗.

Factorials, definition of, 31

Family of sets, 3

intersection of a (
⋂
), 3

union of a (
⋃
), 3

Fields, 25
associative laws in, 23

axioms of arithmetic in, 23

binomial theorem, 34
closure laws in, 23

commutative laws in, 23

difference of elements in, 26
distributive law in, 24

first induction law in, 28
inductive definitions in, 31

inductive sets in, 28

integers in, 34
inverse elements in, 24

irrationals in, 34

Lagrange identity in, 71
natural elements in, 28

neutral elements in, 23
quotients of elements in, 26

rational subfields of, 35
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rationals in, 34

Fields, Archimedean, 43. See also Fields,

ordered

density of rationals in, 45
integral parts of elements of, 44

Fields, complete ordered, 38. See also

Field, Archimedean

Archimedean property of, 43

completeness axiom, 38
density of irrationals in, 51

existence of irrationals in, 46

powers with rational exponents in, 47
powers with real exponents in, 50

principle of nested intervals in, 42
roots in, 46

Fields, ordered, 25. See also Field

absolute value in, 26
axioms of order in, 24

Bernoulli inequalities in, 33
bounded sets in, 36

closed intervals in, 37

density of, 45
greatest lower bound (glb) of sets in, 38

half-closed intervals in, 37

half-open intervals in, 37
infimum (inf) of sets in, 38

intervals in, 37

least upper bound (lub) of sets in, 37
monotonicity in, 24

negative elements in, 25
open intervals in, 37

positive elements in, 25

rational subfield in, 35
second induction law in, 30

supremum (sup) of sets in, 38

transitivity in, 24
trichotomy in, 24

well-ordering of naturals in, 30

Finite

increments law, 271

intervals, 54
sequence, 16

set, 18

First

induction law, 28

law of the mean, 285

Functions, 10. See also Functions on E1

and Functions on metric spaces

binary operations, 12
bounded, 96

Cantor’s function, 186
characteristic, 323

complex, 170

Dirichlet function, 155, 329
equicontinuous, 236

graphs of, 153

isometry, 201
limits of sequences of, see Limits of se-

quences of functions
limits of series of, see Limits of series of

functions

monotone, 181
nondecreasing, 181

nonincreasing, 181

one-to-one, 10
onto, 11

product of, 170
quotient of, 170

real, 170

scalar-valued, 170
sequences of, 227; see also Sequences of

functions

series of, 228; see also Limits of series of
functions

signum function (sgn), 156
strictly monotone, 182

sum of, 170

function value, 10
uniformly continuous, 197

vector-valued, 170

Functions on E1

antiderivatives of, 278

definite integrals of, 279
derivatives of, 251

derived, 251

differentials of, 288; see also Differentials
of functions on E1

differentiable, 251; see also Differentiable

functions on E1

exact primitives of, 278

of bounded variation, 303
indefinite integrals of, 278

integrable, 278; see also Integrable func-

tions on E1

length of, 301

Lipschitz condition for, 258

negative variation functions for, 308
nowhere differentiable, 253

positive variation functions for, 308
primitives of, 278

regulated, see Regulated functions

simple step, 323
step, 323

total variation of, 301

(weakly) absolutely continuous, 309

Functions on metric spaces,149

Saylor URL: http://www.saylor.org/courses/ma241/ The Saylor Foundation



Index 347

bounded, 111
continuity of composite, 163

continuity of the sum, product, and quo-

tient of, 170
continuous, 149

discontinuous, 149
discontinuity points of, 149

domain space of, 149

limits of, 150
projection maps, 174, 198, 226

range space of, 149

General term of a sequence, 16

Generator of an equivalence class, 13

Geometric series

limit of, 128, 236
sum of n terms of a, 33

Globes
closed globes in metric spaces, 97

deleted δ-globes about points in metric

spaces, 150
in En, 76

in E∗, 98

open globes in metric space, 97

Graphs of functions, 153

Greatest lower bound (glb) of a set in an
ordered field, 38

Half-closed

interval in an ordered field, 37

interval in En, 77
line segment in En, 72

Half-open
interval in an ordered field, 37

interval in En, 77

line segment in En, 72

Harmonic series, 241

Hausdorff property, 102

Heine–Borel theorem, 324

generalized, 193

Hölder’s inequality, 93

Hyperharmonic series, 245, 329

Hyperplanes in En, 72. See also Planes in
En

iff (“if and only if”), 1

Image

of a set under a relation, 9

Imaginary

part of complex numbers, 81
numbers in C, 81

unit in C, 81

Inclusion relation of sets (⊆), 1

Increments
finite increments law, 271

of a function, 254

Independent
vectors in En, 70

Indeterminate expressions in E∗, 178

Index notation, 16. See also Sequence

Induction, 27

first induction law, 28
inductive definitions, 31; see also Induc-

tive definitions
proof by, 29

second induction law, 30

Inductive definitions, 31

factorial, 31
powers with natural exponents, 31

ordered n-tuple, 32
products of n field elements, 32

sum of n field elements, 32

Inductive sets in a field, 28

Infimum (inf) of a set in an ordered field,
38

Infinite

countably, 21
intervals, 54

sequence, 15

set, 18

Infinity
plus and minus, 53

unsigned, 179

Inner products of vectors in En, 64
commutativity of, 67

distributive law of, 67

Integers in a field, 34
closure of addition and multiplication of,

35

Integrability, sufficient conditions for, 322.

See also Regulated functions on inter-
vals in E1

Integrable functions on E1, 278. See also

Regulated functions on intervals in E1

Dirichlet function, 329

primitively, 278

Integral part of elements of Archimedean
fields, 44

Integral test of convergence of series, 315

Integrals

convergence of, 315
definite, 279; see also Definite integrals

indefinite, 278
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Integration, 278
componentwise, 282

by parts, 281

of power series, 319

Interior

of a set in a metric space, 101

points of a set in a metric space, 101

Intermediate value property, 203

Intersection

of a family of sets (
⋂
), 3

of closed sets in metric spaces, 104
of open sets in metric spaces, 103

of sets (∩), 2
Intervals in En, 76

boundary of, 77
center of, 77

closed, 77
degenerate, 78

diagonal of, 77

edge-lengths of, 77
endpoints of, 77

half-closed, 77

half-open, 77
midpoints of, 77

open, 77
principle of nested, 189

volume of, 77

Intervals in E1

partitions of, 300

Intervals in E∗, 54

finite, 54

infinite, 54

Intervals in an ordered field, 37
closed, 37

half-closed, 37
half-open, 37

open, 37

principle of nested, 42

Inverse elements
in a field, 24

of vector addition in En, 64, 65

Inverse function, see Inverse of a relation
continuity of the, 195, 207 derivative of

the, 263

Inverse image of a set under a relation, 9

Inverse pair, 8

Inverse of a relation, 8

Irrationals
density of irrationals in a complete field,

51
existence of irrationals in a complete

field, 46

in a field, 34

Isometric metric spaces, 146

Isometry, 201. See also Functions

Iterated limits of functions, 221, 221

Jumps of regulated functions, 330

Kuratowski’s definition of ordered pairs, 7

Lagrange form of the remainder term of

Taylor expansions, 291

Lagrange identity, 71

Lagrange’s law of the mean, 262

Laws of the mean
Cauchy’s, 261

first, 285
Lagrange’s, 262

second, 286, 326

weighted, 286, 326

Leading term of a polynomial, 173

Least upper bound (lub) of a set in an or-

dered field, 37

Lebesgue number of a covering, 192

Left

bounded sets in an ordered field, 36
continuous functions, 153

derivatives of functions, 252

jump of a function, 184
limits of functions, 153

Leibniz

formula for derivatives of a product, 256

test for convergence of alternating series,
248

Length

function, 308

of arcs, 301, 311
of curves, 300

of functions, 301

of line segments in En, 72
of polygons, 300

of vectors in En, 64

L’Hôpital’s rule, 266

Limits of functions

Cauchy criterion for, 162
componentwise, 172

double, 219, 221

iterated, 221, 221
jointly, 174

left, 153
on E∗, 151

in metric spaces, 150

Saylor URL: http://www.saylor.org/courses/ma241/ The Saylor Foundation



Index 349

limits in one variable, 174
L’Hôpital’s rule, 266

relative, 152

relative, over a line, 174
right, 153

subuniform, 225
uniform, 220, 230

Limits of sequences

in E1, 5, 54

in E∗, 55, 58, 152
in metric spaces, 115

lower, 56
subsequential limits, 135

upper, 56

Limits of sequences of functions

pointwise, 228
uniform, 228

Limits of series of functions

pointwise, 228
uniform, 228

Weierstrass M-test, 240

Linear combinations of vectors in En, 66

Line segments in En, 72

closed, 72
endpoints of, 72

half-closed, 72
half-open, 72

length of, 72

midpoint of, 72
open, 72

principle of nested, 205

Linear functionals on En, 74, 75
equivalence between planes and nonzero,

76

representation theorem for, 75

Linear polynomials, 173

Linear spaces, see Vector spaces

Linearity of the definite integral, 280

Lines in En, 71

coordinate equations of, 72

directed, 74
direction vectors of, 71

normalized equation of, 73

parallel, 74
parametric equations of, 72

perpendicular, 74
symmetric form of the normal equations

of, 74

Lipschitz condition, 258

Local
maximum and minimum of functions,

260

Logarithmic function, 208
continuity of the, 208

derivative of the, 263

integral definition of the, 331
as the inverse of the exponential func-

tion, 208
natural logarithm (lnx), 208

properties of the, 332

Logical formula, negation of a, 5

Logical quantifier, see Quantifier, logical

Lower bound of a set in an ordered field,

36

Lower limit of a sequence, 56

Maclaurin series, 294

Mapping, see Function
contraction, 198

projection, 174, 198, 226

Master set, 2

Maximum
local, of a function, 260, 294

of a set in an ordered field, 36

Mean, laws of. See Laws of the mean

Metrics, 95. See also Metric spaces

axioms of, 95

discrete, 96
equivalent, 219

for E∗, 99

standard metric in En, 96

Metric spaces, 95. See also Metrics

accumulation points of sets or sequences

in, 115
boundaries of sets in, 108

bounded functions on sets in, 111
bounded sequences in, 111

bounded sets in, 109

Cauchy sequences in, 141
Cauchy’s convergence criterion for se-

quences in, 143

clopen sets in, 103
closed balls in, 97

closed sets in, 103, 138
closures of sets in, 137

compact sets in, 186

complete, 143
completion of, 146

concurrent sequences in, 144

connected, 212
constant sequences in, 116

continuity of the metric on, 223
convergent sequences in, 115

cluster points of sets or sequences in,
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115
deleted δ-globes about points in, 150

diameter of sets in, 109

disconnected, 212
dense subsets in, 139

discrete, 96
distance between sets in, 110

divergent sequences in, 115

En as a metric space, 96
E∗ as a metric space, 98

functions on, 149; see also Functions on

metric spaces
Hausdorff property in, 102

interior of a set in a, 101
interior points of sets in, 101

isometric, 146

limits of sequences in, 115
nowhere dense sets in, 141

open balls in, 97

open sets in, 101
open globes in, 97

neighborhoods of points in, 101
perfect sets in, 118

product of, 218

sequentially compact sets in, 186
spheres in, 97

totally bounded sets in, 113

Midpoints
of line segments in En, 72

of intervals in En, 77

Minimum

local, of a function, 260, 294

of a set in an ordered field, 36

Minkowski inequality, 94

Monomials in n variables, 173. See also

Polynomials in n variables

degree of, 173

Monotone sequence of numbers, 17
nondecreasing, 17

nonincreasing, 17
strictly, 17

Monotone functions, 181

left and right limits of, 182
nondecreasing, 181

nonincreasing, 181

strictly, 182

Monotone sequence of sets, 17

Monotonicity
in an ordered field, 24

of definite integrals, 284

Moore–Smith theorem, 223

de Morgan’s duality laws, 3. See also Sets

Natural elements in a field, 28
well-ordering of naturals in an ordered

field, 30

Natural numbers in E1, 28

Negation of a logical formula, 5

Negative

elements of an ordered field, 25

variation functions, 308

Neighborhood
of a point in E1, 58

of a point in E∗, 58

of a point in a metric space, 101

Neutral elements
in a field, 23

of vector addition in En, 65

Nondecreasing

functions, 181
sequences of numbers, 17

Nonincreasing

functions, 181

sequences of numbers, 17

Normal to a plane in En, 73

Normalized equations

of a line, 73
of a plane, 73

Normed linear spaces, 90

absolute value in, 90

Cn as a, 91
distances in, 92

En as a, 91
Euclidean spaces as, 91

norm in, 90

translation-invariant distances in, 92
triangle inequality in, 90

Norms

in normed linear spaces, 90

standard norm in Cn, 91
standard norm in En, 91

Nowhere dense sets in metric spaces, 141

Open
ball in a metric space, 97

covering, 192

globe in a metric space, 97
interval in an ordered field, 37

interval in En, 77

line segment in En, 72
sets in a metric space, 101

Ordered field, see Field, ordered

Ordered n-tuple, 1

inductive definition of an, 32
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Ordered pair, 1
inverse, 8

Kuratowski’s definition of an, 7

Orthogonal vectors in En, 65

Orthogonal projection
of a point onto a plane in En, 76

Osgood’s theorem, 221, 223

Parallel

lines in En, 74
planes in En, 74

vectors in En, 65

Parametric equations
of curves in En, 212

of lines in En, 72

Partitions of intervals in E1, 300

refinements of, 300

Pascal’s law, 34

Peano form of the remainder term of Tay-

lor expansions, 296

Perfect sets in metric spaces, 118

Cantor’s set, 120

Perpendicular
lines in En, 74

planes in En, 74
vectors in En, 65

Piecewise convex sets, 204

Planes in En, 72

directed, 74

distance between points and, 76
equation of, 73

equivalence of nonzero linear functionals
and, 76

general equation of, 73

normal to, 73
normalized equations of, 73

orthogonal projection of a point onto, 76

parallel, 74
perpendicular, 74

Point in En, 63

distance from a plane to a, 76
orthogonal projection onto a plane, 76

Pointwise limits

of sequences of functions, 228
of series of functions, 228

Polar coordinates in C, 83

Polar form of complex numbers, 83

Polygons

connected sets, 204
joining two points, 204

length of, 300

Polygon-connected sets, 204

Polynomials in n variables, 173

continuity of, 173
degree of, 173

leading term of, 173

linear, 173

Positive

elements of an ordered field, 25

variation functions, 308

Power function, 208

continuity of the, 209
derivative of the, 264

Power series, 243

Abel’s theorem for, 249
differentiation of, 319

integration of, 319

radius of convergence of, 243
Taylor series, 292

Powers
with natural exponents in a field, 31

with rational exponents in a complete

field, 47
with real exponents in a complete field,

50

Primitive, 278. See also Integral, indefinite

exact, 278

Principle of nested
closed sets, 188

intervals in complete ordered fields, 189

intervals in En, 189
intervals in ordered fields, 42

line segments, 205

Products of functions, 170

derivatives of, 256

Leibniz formula for derivatives of, 256

Product of metric spaces, 218

Projection maps, 174, 198, 226

Proper subset of a set (⊂), 1

Quantifier, logical, 3
existential (∃), 4
universal (∀), 4

Quotient of elements of a field, 26

Quotient of functions, 170

derivatives of, 256

Radius of convergence of a power series,

243

Range

of a relation, 9
of a sequence, 16

space of functions on metric spaces, 149
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Ratio test for convergence of series, 241

Rational functions, 173
continuity of, 173

Rational numbers, 19

as a countable set, 19

Rationals
closure laws of, 35

density of rationals in an Archimedean
field, 45

incompleteness of, 47

in a field, 34
as a subfield, 35

Real

functions, 170

numbers, see E1

part of complex numbers, 81

points in C, 81
vector spaces, 87

unit in C, 81

Rearrangement

of absolutely convergent series of func-
tions, 238

of conditionally convergent series of
functions, 250

Rectifiable

arc, 309

set, 303

Recursive definition, 31. See also Inductive

definition

Refined comparison test for convergence of

series, 245

Refinements of partitions in E1, 300

Reflexive relation, 12

Regulated functions on intervals in E1, 323

approximation by simple step functions,

324
characteristic functions of intervals, 323

jumps of, 330
are integrable, 325

simple step functions, 323

Relation, 8. See also Sets

domain of a, 9
equivalence, 12

image of a set under a, 9
inverse, 8

inverse image of a set under a, 9

range of a, 9
reflexive, 12

symmetric, 12

transitive, 12

Relative

continuity of functions, 152, 174

limits of functions, 152, 174

Remainder term of Taylor expansions, 289
Cauchy form of the, 291

integral form of the, 289

Lagrange form of the, 291
Peano form of the, 296

Schloemilch–Roche form of the, 296

Representative of an equivalence class, 13

Right

bounded sets in an ordered field, 36
continuous functions, 153

derivatives of functions, 252
jump of a function, 184

limits of functions, 153

Rolle’s theorem, 261

Root test for convergence of series, 241

Roots

in C, 85

in a complete field, 46

Scalar field of a vector space, 86

Scalar products
in En, 64

Scalar-valued functions, 170

Scalars

of En, 64

of a vector space, 86

Schloemilch–Roche form of the remainder
term of Taylor expansions, 296

Second induction law, 30

Second law of the mean, 286, 326

Sequences, 15
bounded, 111

Cauchy, 141
Cauchy’s convergence criterion for, 143

concurrent, 144

constant, 116
convergent, 115

divergent, 115

domain of, 15
double, 20, 222, 223

cluster points of sequences in E∗, 60
finite, 16

general terms of, 16

index notation, 16
infinite, 15

limits of sequences in E1, 5, 54

limits of sequences in E∗, 55, 58, 152
limits of sequences in metric spaces, 115

lower limits of, 56
monotone sequences of numbers, 17

monotone sequences of sets, 17
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nondecreasing sequences of numbers, 17
nonincreasing sequences of numbers, 17

range of, 16

of functions, 227; see also Sequences of
functions

strictly monotone sequences of numbers,
17

subsequences of, 17

subsequential limits of, 135
totally bounded, 188

upper limits of, 56

Sequences of functions
limits of, see Limits of sequences of

functions
uniformly bounded, 234

Sequential criterion

for continuity, 161
for uniform continuity, 203

Sequentially compact sets, 186

Series. See also Series of functions

Abel’s test for convergence of, 247

alternating, 248
geometric, 128, 236

harmonic, 241

hyperharmonic, 245, 329
integral test of convergence of, 327

Leibniz test for convergence of alternat-
ing series, 248

ratio test for convergence of, 241

refined comparison test, 245
root test for convergence of, 241

summation by parts, 247

Series of functions, 228; see also Limits of

series of functions
absolutely convergent, 237

conditionally convergent, 237

convergent, 228
Dirichlet test, 248

differentiation of, 318

divergent, 229
integration of, 318

limit of geometric series, 128
power series, 243; see also Power series

rearrangement of, 238

sum of n terms of a geometric series, 33

Sets, 1

Cantor’s diagonal process, 21

Cantor’s set, 120
Cartesian product of (×), 2

characteristic functions of, 323
compact, 186, 193

complement of a set (−), 2

connected, 212
convex, 204

countable, 18

countable union of, 20
cross product of (×), 2

diagonal process, Cantor’s, 21
difference of (−), 2

disjoint, 2

distributive laws of, 7
contracting sequence of, 17

elements of (∈), 1
empty set (∅), 1
equality of, 1

expanding sequence of, 17
family of, 3

finite, 18

inclusion relation of, 1
infinite, 18

intersection of a family of (
⋂
), 3

intersection of (∩), 2
master set, 2

monotone sequence of, 17
de Morgan’s duality laws, 3

perfect sets in metric spaces, 118

piecewise convex, 204
polygon-connected, 204

proper subset of a set (⊂), 1

rectifiable, 303
relation, 8

sequentially compact, 186
subset of a set (⊆), 1

superset of a set (⊇), 1

uncountable, 18
union of a family of (

⋃
), 3

union of (∪), 2
Signum function (sgn), 156

Simple arcs, 211

endpoints of, 211

Simple step functions, 323

approximating regulated functions, 324

Singleton, 103

Span of a set of vectors in a vector space,
90

Sphere
in En, 76

in a metric space, 97

Step functions, 323

simple, 323

Strictly monotone functions, 182

Subsequence of a sequence, 17

Subsequential limits, 135

Subset of a set (⊆), 1
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proper (⊂), 1

Subuniform limits of functions, 225

Sum of functions, 170

Summation by parts, 247

Superset of a set (⊇), 1

Supremum (sup) of a bounded set in an
ordered field, 38

Symmetric relation, 12

Tangent

lines to curves, 257
vectors to curves, 257

unit tangent vectors, 314

Taylor. See also Taylor expansions
expansions, 289

polynomial, 289

series, 292; see also power series
series about zero (Maclaurin series), 294

Taylor expansions, 289. See also Remain-
der term of Taylor expansions

for the cosine function, 297

for the exponential function, 293
for the logarithmic function, 298

for the power function, 298
for the sine function, 297

Termwise

differentiation of series of functions, 318
integration of series of functions, 318

Total variation, 301

additivity of, 301
function, 308

Totally bounded sets in metric spaces, 113

Totally disconnected sets, 217

Transitive relation, 12

Transitivity in an ordered field, 24

Triangle inequality

in Euclidean spaces, 88
in normed linear spaces, 90

of the absolute value in En, 67

of the distance in En, 68

Trichotomy in an ordered field, 24

Trigonometric form of complex numbers,
83

Trigonometric functions

arcsine, 334
cosine, 336

integral definitions of, 334

sine, 336

Uncountable set, 18
Cantor’s diagonal process, 21

the real numbers as a, 20

Uniform continuity, 197
sequential criterion for, 203

Uniform limits

of functions, 220, 230

of sequences of functions, 228
of series of functions, 228

Uniformly continuous functions, 197

Union
countable, 20

of a family of sets (
⋃
), 3

of closed sets in metric spaces, 104
of open sets in metric spaces, 103

of sets (∪), 2
Unit vector

tangent, 314
in En, 65

Universal quantifier (∀), 4
Unorthodox operations in E∗, 180

Upper bound of a set in an ordered field,
36

Upper limit of a sequence, 56

Variation

bounded, 303

negative variation functions, 308
positive variation functions, 308

total; see Total variation

Vector-valued functions, 170

Vectors in En, 63

absolute value of, 64
angle between, 70

basic unit, 64

components of, 63
coordinates of, 63

dependent, 69

difference of, 64
distance between two, 64

dot product of two, 64
independent, 70

inner product of two, 64; see also Inner

products of vectors in En

inverse of, 65

length of, 64

linear combination of, 66
orthogonal, 65

parallel, 65
perpendicular, 65

sum of, 64

unit, 65
zero, 63

Vector spaces, 86

complex, 87
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Euclidean spaces, 87
normed linear spaces, 90

real, 87

scalar field of, 86
span of a set of vectors in, 90

Volume of an interval in En, 77
additivity of the, 79

Weierstrass M-test for convergence of se-
ries, 240

Weighted law of the mean, 286, 326

Well-ordering property, 30

Zero vector in En, 63
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