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This text is intended for a one- or two-semester undergraduate course in abstract algebra. Traditionally, these courses have covered the theoreti-cal aspects of groups, rings, and elds. However, with the development of computing in the last several decades, applications that involve abstract al-gebra and discrete mathematics have become increasingly important, and many science, engineering, and computer science students are now electing to minor in mathematics. Though theory still occupies a central role in the subject of abstract algebra and no student should go through such a course without a good notion of what a proof is, the importance of applications such as coding theory and cryptography has grown signi cantly.









Until recently most abstract algebra texts included few if any applica-tions. However, one of the major problems in teaching an abstract algebra course is that for many students it is their rst encounter with an environ-ment that requires them to do rigorous proofs. Such students often nd it hard to see the use of learning to prove theorems and propositions; applied examples help the instructor provide motivation.









This text contains more material than can possibly be covered in a single semester. Certainly there is adequate material for a two-semester course, and perhaps more; however, for a one-semester course it would be quite easy to omit selected chapters and still have a useful text. The order of presen-tation of topics is standard: groups, then rings, and nally elds. Emphasis can be placed either on theory or on applications. A typical one-semester course might cover groups and rings while brie y touching on eld theory, using Chapters 1 through 6, 9, 10, 11, 13 (the rst part), 16, 17, 18 (the rst part), 20, and 21. Parts of these chapters could be deleted and applications substituted according to the interests of the students and the instructor. A two-semester course emphasizing theory might cover Chapters 1 through 6, 9, 10, 11, 13 through 18, 20, 21, 22 (the rst part), and 23. On the other
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hand, if applications are to be emphasized, the course might cover Chapters 1 through 14, and 16 through 22. In an applied course, some of the more the-oretical results could be assumed or omitted. A chapter dependency chart appears below. (A broken line indicates a partial dependency.)
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Though there are no speci c prerequisites for a course in abstract alge-bra, students who have had other higher-level courses in mathematics will generally be more prepared than those who have not, because they will pos-sess a bit more mathematical sophistication. Occasionally, we shall assume some basic linear algebra; that is, we shall take for granted an elemen-tary knowledge of matrices and determinants. This should present no great problem, since most students taking a course in abstract algebra have been introduced to matrices and determinants elsewhere in their career, if they have not already taken a sophomore- or junior-level course in linear algebra.
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Exercise sections are the heart of any mathematics text. An exercise set appears at the end of each chapter. The nature of the exercises ranges over several categories; computational, conceptual, and theoretical problems are included. A section presenting hints and solutions to many of the exercises appears at the end of the text. Often in the solutions a proof is only sketched, and it is up to the student to provide the details. The exercises range in di culty from very easy to very challenging. Many of the more substantial problems require careful thought, so the student should not be discouraged if the solution is not forthcoming after a few minutes of work.









There are additional exercises or computer projects at the ends of many of the chapters. The computer projects usually require a knowledge of pro-gramming. All of these exercises and projects are more substantial in nature and allow the exploration of new results and theory.
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A certain amount of mathematical maturity is necessary to nd and study applications of abstract algebra. A basic knowledge of set theory, mathe-matical induction, equivalence relations, and matrices is a must. Even more important is the ability to read and understand mathematical proofs. In this chapter we will outline the background needed for a course in abstract algebra.









1.1    A Short Note on Proofs









Abstract mathematics is di erent from other sciences. In laboratory sciences such as chemistry and physics, scientists perform experiments to discover new principles and verify theories. Although mathematics is often motivated by physical experimentation or by computer simulations, it is made rigorous through the use of logical arguments. In studying abstract mathematics, we take what is called an axiomatic approach; that is, we take a collection of objects S and assume some rules about their structure. These rules are called axioms. Using the axioms for S, we wish to derive other information about S by using logical arguments. We require that our axioms be consistent; that is, they should not contradict one another. We also demand that there not be too many axioms. If a system of axioms is too restrictive, there will be few examples of the mathematical structure.









A statement in logic or mathematics is an assertion that is either true or false. Consider the following examples:




 

	3 + 56 13 + 8=2. All cats are black. 2 + 3 = 5. 
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	2x = 6 exactly when x = 4. 









If ax2 + bx + c = 0 and a 6= 0, then 





p





x =    b       b2      4ac:





2a









x3      4x2 + 5x    6.









All but the rst and last examples are statements, and must be either true or false.









A mathematical proof is nothing more than a convincing argument about the accuracy of a statement. Such an argument should contain enough detail to convince the audience; for instance, we can see that the statement \2x = 6 exactly when x = 4" is false by evaluating 2 4 and noting that 6 6= 8, an argument that would satisfy anyone. Of course, audiences may vary widely: proofs can be addressed to another student, to a professor, or to the reader of a text. If more detail than needed is presented in the proof, then the explanation will be either long-winded or poorly written. If too much detail is omitted, then the proof may not be convincing. Again it is important to keep the audience in mind. High school students require much more detail than do graduate students. A good rule of thumb for an argument in an introductory abstract algebra course is that it should be written to convince one's peers, whether those peers be other students or other readers of the text.









Let us examine di erent types of statements. A statement could be as simple as \10=5 = 2"; however, mathematicians are usually interested in more complex statements such as \If p, then q," where p and q are both statements. If certain statements are known or assumed to be true, we wish to know what we can say about other statements. Here p is called the hypothesis and q is known as the conclusion. Consider the following statement: If ax2 + bx + c = 0 and a 6= 0, then





p





x =    b       b2      4ac:





2a









The hypothesis is ax2 + bx + c = 0 and a 6= 0; the conclusion is p





x =    b       b2      4ac:





2a









Notice that the statement says nothing about whether or not the hypothesis is true. However, if this entire statement is true and we can show that
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ax2 + bx + c = 0 with a 6= 0 is true, then the conclusion must be true. A proof of this statement might simply be a series of equations:









ax2 + bx + c = 0







	



b





	



c








	



x2 + ax =    a








	



x2 + abx +    2ba   2





	



=    2ba   2       ac








	



x + 2ba   2





	



= b2 4a24ac








	



x +  b





	



=    pb2      4ac








	



2a





	



2a








	



x =    b    pb2      4ac:








	
	



2a









 







If we can prove a statement true, then that statement is called a propo-sition. A proposition of major importance is called a theorem. Sometimes instead of proving a theorem or proposition all at once, we break the proof down into modules; that is, we prove several supporting propositions, which are called lemmas, and use the results of these propositions to prove the main result. If we can prove a proposition or a theorem, we will often, with very little e ort, be able to derive other related propositions called corollaries.









Some Cautions and Suggestions









There are several di erent strategies for proving propositions. In addition to using di erent methods of proof, students often make some common mis-takes when they are rst learning how to prove theorems. To aid students who are studying abstract mathematics for the rst time, we list here some of the di culties that they may encounter and some of the strategies of proof available to them. It is a good idea to keep referring back to this list as a reminder. (Other techniques of proof will become apparent throughout this chapter and the remainder of the text.)




 

	A theorem cannot be proved by example; however, the standard way to show that a statement is not a theorem is to provide a counterexample. 









Quanti ers are important. Words and phrases such as only, for all, for every, and for some possess di erent meanings. 
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	Never assume any hypothesis that is not explicitly stated in the theo-rem. You cannot take things for granted. 









Suppose you wish to show that an object exists and is unique. First show that there actually is such an object. To show that it is unique, assume that there are two such objects, say r and s, and then show that r = s. 









Sometimes it is easier to prove the contrapositive of a statement. Prov-ing the statement \If p, then q" is exactly the same as proving the statement \If not q, then not p." 









Although it is usually better to nd a direct proof of a theorem, this task can sometimes be di cult. It may be easier to assume that the theorem that you are trying to prove is false, and to hope that in the course of your argument you are forced to make some statement that cannot possibly be true. 









Remember that one of the main objectives of higher mathematics is proving theorems. Theorems are tools that make new and productive ap-plications of mathematics possible. We use examples to give insight into existing theorems and to foster intuitions as to what new theorems might be true. Applications, examples, and proofs are tightly interconnected| much more so than they may seem at rst appearance.









1.2    Sets and Equivalence Relations









Set Theory









A set is a well-de ned collection of objects; that is, it is de ned in such a manner that we can determine for any given object x whether or not x belongs to the set. The objects that belong to a set are called its elements or members. We will denote sets by capital letters, such as A or X; if a is an element of the set A, we write a 2 A.









A set is usually speci ed either by listing all of its elements inside a pair of braces or by stating the property that determines whether or not an object x belongs to the set. We might write









X = fx1; x2; : : : ; xng









for a set containing elements x1; x2; : : : ; xn  or









X = fx : x satis  es Pg
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if each x in X satis es a certain property P. For example, if E is the set of even positive integers, we can describe E by writing either









E = f2; 4; 6; : : :g   or   E = fx : x is an even integer and x > 0g:









We write 2 2 E when we want to say that 2 is in the set E, and 3 2= E to say that 3 is not in the set E.









Some of the more important sets that we will consider are the following:









N = fn : n is a natural numberg = f1; 2; 3; : : :g;









Z = fn : n is an integerg = f: : : ;   1; 0; 1; 2; : : :g;









Q = fr : r is a rational numberg = fp=q : p; q 2 Z where q 6= 0g;









R = fx : x is a real numberg;









C = fz : z is a complex numberg:









We nd various relations between sets and can perform operations on sets. A set A is a subset of B, written A B or B A, if every element of A is also an element of B. For example,









f4; 5; 8g    f2; 3; 4; 5; 6; 7; 8; 9g









and









N    Z    Q    R    C:









Trivially, every set is a subset of itself. A set B is a proper subset of a set A if B A but B 6= A. If A is not a subset of B, we write A 6 B; for example, f4; 7; 9g 6 2f; 4; 5; 8; 9g. Two sets are equal, written A = B, if we can show that A B and B A.









It is convenient to have a set with no elements in it. This set is called the empty set and is denoted by ;. Note that the empty set is a subset of every set.









To construct new sets out of old sets, we can perform certain operations: the union A [ B of two sets A and B is de ned as





A [ B = fx : x 2 A or x 2 Bg;









the intersection of A and B is de  ned by









A \ B = fx : x 2 A and x 2 Bg:









If A = f1; 3; 5g and B = f1; 2; 3; 9g, then









A [ B = f1; 2; 3; 5; 9g   and   A \ B = f1; 3g:
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We can consider the union and the intersection of more than two sets.  In





this case we write





n





[





Ai = A1 [ : : : [ An





i=1









and









n





\





Ai = A1 \ : : : \ An





i=1









for the union and intersection, respectively, of the collection of sets A1; : : : An. When two sets have no elements in common, they are said to be disjoint; for example, if E is the set of even integers and O is the set of odd integers, then E  and O  are disjoint.   Two sets A and B  are disjoint exactly when









A \ B = ;.









Sometimes we will work within one xed set U, called the universal set. For any set A U, we de ne the complement of A, denoted by A0,





to be the set









A0 = fx : x 2 U  and x 2= Ag:









We de  ne the di  erence of two sets A and B to be









A n B = A \ B0 = fx : x 2 A and x 2= Bg:









Example 1. Let R be the universal set and suppose that









A = fx 2 R : 0 < x     3g   and   B = fx 2 R : 2     x < 4g:









Then









A \ B = fx 2 R : 2     x     3g









A [ B = fx 2 R : 0 < x < 4g









A n B = fx 2 R : 0 < x < 2g









A0 = fx 2 R : x     0 or x > 3g:

















Proposition 1.1  Let A, B, and C be sets.  Then









1. 	A [ A = A, A \ A = A, and A n A = ;; 








	


A [ ; = A and A \ ; = ;; 









 











1.2   SETS AND EQUIVALENCE RELATIONS	7









3. 	A [ (B [ C) = (A [ B) [ C and A \ (B \ C) = (A \ B) \ C; 








	


A [ B = B [ A and A \ B = B \ A; 











	


A [ (B \ C) = (A [ B) \ (A [ C); 











	


A \ (B [ C) = (A \ B) [ (A \ C). 












Proof. We will prove (1) and (3) and leave the remaining results to be proven in the exercises.









(1) Observe that









A [ A = fx :  x 2 A or x 2 Ag









= 	fx :  x 2 Ag 








	


A 












and









A \ A = fx :  x 2 A and x 2 Ag









= 	fx :  x 2 Ag 








	


A: 












Also, A n A = A \ A0 = ;.




	


For sets A, B, and C, 











	


[ (B [ C) = A [ fx :  x 2 B or x 2 Cg 











	


fx :  x 2 A or x 2 B, or x 2 Cg 











	


fx :  x 2 A or x 2 Bg [ C 











	


(A [ B) [ C: 














	



A similar argument proves that A \ (B \ C) = (A \ B) \ C.





	



	



Theorem 1.2 (De Morgan's Laws)  Let A and B be sets.  Then





	



	



1.





	



(A [ B)0





	



= A0





	



\ B0;





	



	



2.





	



(A \ B)0





	



= A0





	



[ B0.





	




 







Proof. (1) We must show that (A [ B)0 A0 \ B0 and (A [ B)0 A0 \ B0. Let x 2 (A [ B)0. Then x 2= A [ B. So x is neither in A nor in B, by the









de nition of the union of sets. By the de nition of the complement, x 2 A0 and x 2 B0. Therefore, x 2 A0 \ B0 and we have (A [ B)0 A0 \ B0.
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To show the reverse inclusion, suppose that x 2 A0





	



\ B0.  Then x 2 A0





	



	



and x





	
	



B0, and so x = A and x = B.  Thus x = A





	



B and so x





	
	



(A    B)0.





	



	
	



2





	



2





	



2





	



2





	



[





	
	



2





	



[





	



	



Hence, (A [ B)0     A0 \ B0





	



and so (A [ B)0





	



= A0 \ B0.





	
	
	
	



	



The proof of (2) is left as an exercise.





	
	
	
	
	
	




 







Example 2. Other relations between sets often hold true.  For example,









(A n B) \ (B n A) = ;:









To see that this is true, observe that









(A n B) \ (B n A) = (A \ B0) \ (B \ A0)




	


A \ A0 \ B \ B0 











	


;: 
























Cartesian Products and Mappings









Given sets A and B, we can de ne a new set A B, called the Cartesian product of A and B, as a set of ordered pairs. That is,









A    B = f(a; b) :  a 2 A and b 2 Bg:













Example 3. If A = fx; yg, B = f1; 2; 3g, and C = ;, then A B is the set f(x; 1); (x; 2); (x; 3); (y; 1); (y; 2); (y; 3)g





and









A    C = ;:













We de  ne the Cartesian product of n sets to be









A1	An = f(a1; : : : ; an) : ai 2 Ai for i = 1; : : : ; ng:









If A = A1 = A2 = = An, we often write An for A A (where A would be written n times). For example, the set R3 consists of all of 3-tuples of real numbers.









Subsets of A B are called relations. We will de ne a mapping or function f A B from a set A to a set B to be the special type of
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relation in which for each element a 2 A there is a unique element b 2 B such that (a; b) 2 f; another way of saying this is that for every element in





f





A, f assigns a unique element in B. We usually write f : A ! B or A ! B. Instead of writing down ordered pairs (a; b) 2 A B, we write f(a) = b or f : a 7!b. The set A is called the domain of f and









f(A) = ff(a) : a 2 Ag    B









is called the range or image of f. We can think of the elements in the function's domain as input values and the elements in the function's range as output values.











	
	



A





	
	



B





	



	
	



1





	



f





	
	



a





	



	
	
	
	
	
	



	
	
	
	
	
	



	
	



2





	
	
	



b





	



	
	



3





	
	
	



c





	



	
	
	
	
	
	



	
	
	
	
	
	



	
	



A





	



g





	



B





	



	
	
	
	
	



	
	



1





	
	
	



a





	



	
	
	
	
	
	



	
	
	
	
	
	



	
	



2





	
	
	



b





	



	
	



3





	
	
	



c





	



	
	
	
	
	
	



	
	



Figure 1.1. Mappings





	



	



Example  4.





	



Suppose A =  f1; 2; 3g and B  =  fa; b; cg.   In Figure  1.1 we





	




 



de ne relations f and g from A to B. The relation f is a mapping, but g is not because 1 2 A is not assigned to a unique element in B; that is, g(1) = a and g(1) = b.









Given a function f : A ! B, it is often possible to write a list describing what the function does to each speci c element in the domain. However, not all functions can be described in this manner. For example, the function f : R ! R that sends each real number to its cube is a mapping that must be described by writing f(x) = x3 or f : x 7!x3.
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Consider the relation f : Q ! Z given by f(p=q) = p. We know that 1=2 = 2=4, but is f(1=2) = 1 or 2? This relation cannot be a mapping because it is not well-de ned. A relation is well-de ned if each element in the domain is assigned to a unique element in the range.









If f : A ! B is a map and the image of f is B, i.e., f(A) = B, then f is said to be onto or surjective. A map is one-to-one or injective if a1 6= a2 implies f(a1) 6= f(a2). Equivalently, a function is one-to-one if f(a1) = f(a2) implies a1 = a2. A map that is both one-to-one and onto is called bijective.









Example 5. Let f : Z ! Q be de ned by f(n) = n=1. Then f is one-to-one but not onto. De ne g : Q ! Z by g(p=q) = p where p=q is a rational number expressed in its lowest terms with a positive denominator. The function g is onto but not one-to-one.









Given two functions, we can construct a new function by using the range of the rst function as the domain of the second function. Let f : A ! B and g : B ! C be mappings. De ne a new map, the composition of f and g from A to C, by (g f)(x) = g(f(x)).











	



A





	



B





	



C





	



	



f





	



a





	



g





	



	



1





	
	



X





	



	
	
	
	



	



2





	



b





	



Y





	



	



3





	



c





	



Z





	



	
	
	
	



	



A





	



g   f  C





	
	



	



1





	
	



X





	



	



2





	
	



Y





	



	



3





	
	



Z





	



	
	
	
	




 











Figure 1.2. Composition of maps
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Example 6. Consider the functions f : A ! B and g : B ! C that are de ned in Figure  1.2(a). The composition of these functions, g f : A ! C, is de ned in Figure  1.2(b).









Example 7. Let f(x) = x2  and g(x) = 2x + 5.  Then









(f    g)(x) = f(g(x)) = (2x + 5)2  = 4x2 + 20x + 25









and





(g   f)(x) = g(f(x)) = 2x2 + 5:









In general, order makes a di  erence; that is, in most cases f    g 6= g   f.









Example 8. Sometimes it is the case that f g = g f. Let f(x) = x3 and p





g(x) =  3  x.  Then





p	p





(f    g)(x) = f(g(x)) = f( 3  x ) = ( 3  x )3  = x









and	p









(g   f)(x) = g(f(x)) = g(x3) =  3  x3  = x:

















Example 9. Given a 2    2 matrix









a b A = c d ;









we can de  ne a map TA : R2  ! R2  by









TA(x; y) = (ax + by; cx + dy)









for (x; y) in R2.  This is actually matrix multiplication; that is,









a   b      x	ax + by





c   d      y    =    cx + dy   :









Maps from Rn  to Rm  given by matrices are called linear maps or linear





transformations.









Example 10. Suppose that S = f1; 2; 3g.  De  ne a map    : S ! S by









(1) = 2;	(2) = 1;	(3) = 3:
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This is a bijective map.  An alternative way to write    is








	



(1)1





	



(2)2





	



(3)3





	



=    21   12   33   :





	




 







For any set S, a one-to-one and onto mapping     : S ! S  is called a per-





mutation of S.









Theorem 1.3  Let f : A ! B, g : B ! C, and h : C ! D.  Then









1.  The  composition  of  mappings  is  associative;  that  is,  (h    g)    f  =









h   (g   f);









2.  If f  and g are both one-to-one, then the mapping g   f  is one-to-one;









3.  If f  and g are both onto, then the mapping g   f  is onto;









4.  If f  and g are bijective, then so is g   f.









Proof. We will prove (1) and (3). Part (2) is left as an exercise. Part (4) follows directly from (2) and (3).









(1) We must show that









h   (g   f) = (h   g)   f:









For a 2 A we have









(h   (g   f))(a) = h((g   f)(a))









= 	h(g(f(a))) 








	


(h   g)(f(a)) 











	


((h   g)   f)(a): 











	


Assume that f and g are both onto functions. Given c 2 C, we must show that there exists an a 2 A such that (g f)(a) = g(f(a)) = c. However, since g is onto, there is a b 2 B such that g(b) = c. Similarly, there is an 




	


2 A such that f(a) = b.  Accordingly, 












(g   f)(a) = g(f(a)) = g(b) = c:













If S is any set, we will use idS or id to denote the identity mapping from S to itself. De ne this map by id(s) = s for all s 2 S. A map g : B ! A
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is an inverse mapping of f : A ! B if g f = idA and f g = idB; in other words, the inverse function of a function simply \undoes" the function. A map is said to be invertible if it has an inverse. We usually write f 1 for the inverse of f.











	



Example 11. The function f(x) = x3  has inverse f  1(x) =





	



p3x by Exam-








	



ple  8.





	




 







Example 12. The natural logarithm and the exponential functions, f(x) = ln x and f 1(x) = ex, are inverses of each other provided that we are careful about choosing domains. Observe that









f(f  1(x)) = f(ex) = ln ex = x









and





f  1(f(x)) = f  1(ln x) = eln x = x











	



whenever composition makes sense.





	



	



Example 13. Suppose that





	



	



A =    53





	



21   :









 







Then A de  nes a map from R2  to R2  by









TA(x; y) = (3x + y; 5x + 2y):









We can nd an inverse map of TA by simply inverting the matrix A; that is, TA 1 = TA 1 . In this example,









A 1 = 2 1 ; 5 3









hence, the inverse map is given by









TA 1(x; y) = (2x    y;   5x + 3y):









It is easy to check that









TA 1     TA(x; y) = TA    TA 1(x; y) = (x; y):
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Not every map has an inverse.  If we consider the map





	
	
	



	



TB(x; y) = (3x; 0)





	
	
	



	



given by the matrix





	
	
	
	



	



B =    03





	



00   ;





	
	
	



	



then an inverse map would have to be of the form





	
	
	



	



TB 1(x; y) = (ax + by; cx + dy)





	
	
	



	



and





	
	
	
	



	



(x; y) = T    TB 1(x; y) = (3ax + 3by; 0)





	
	



	



for all x and y.  Clearly this is impossible because y might not be 0.





	
	



	



Example 14. Given the permutation





	
	
	
	



	



=    21





	



32   13





	
	
	



	



on S = f1; 2; 3g, it is easy to see that the permutation de  ned by





	
	



	



1  =    31





	



12   23





	
	
	




 







is the inverse of . In fact, any bijective mapping possesses an inverse, as we will see in the next theorem.









Theorem 1.4 A mapping is invertible if and only if it is both one-to-one and onto.









Proof. Suppose rst that f : A ! B is invertible with inverse g : B ! A. Then g f = idA is the identity map; that is, g(f(a)) = a. If a1; a2 2 A with f(a1) = f(a2), then a1 = g(f(a1)) = g(f(a2)) = a2. Consequently, f is one-to-one. Now suppose that b 2 B. To show that f is onto, it is necessary to nd an a 2 A such that f(a) = b, but f(g(b)) = b with g(b) 2 A. Let a = g(b).









Now assume the converse; that is, let f be bijective. Let b 2 B. Since f is onto, there exists an a 2 A such that f(a) = b. Because f is one-to-one, a must be unique. De ne g by letting g(b) = a. We have now constructed the inverse of f.
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Equivalence Relations and Partitions









A fundamental notion in mathematics is that of equality. We can general-ize equality with the introduction of equivalence relations and equivalence classes. An equivalence relation on a set X is a relation R X X such that













(x; x) 2 R for all x 2 X (re  exive property);









(x; y) 2 R implies (y; x) 2 R (symmetric property);









(x; y) and (y; z) 2 R imply (x; z) 2 R (transitive property).









Given an equivalence relation R on a set X, we usually write x y instead of (x; y) 2 R. If the equivalence relation already has an associated notation





such as =,    , or    , we will use that notation.





=









Example 15. Let p, q, r, and s be integers, where q and s are nonzero. De ne p=q r=s if ps = qr. Clearly is re exive and symmetric. To show that it is also transitive, suppose that p=q r=s and r=s t=u, with q, s, and u all nonzero. Then ps = qr and ru = st. Therefore,









psu = qru = qst:









Since s 6= 0, pu = qt.  Consequently, p=q     t=u.









Example 16. Suppose that f and g are di erentiable functions on R. We can de ne an equivalence relation on such functions by letting f(x) g(x) if f0(x) = g 0(x). It is clear that is both re exive and symmetric. To demonstrate transitivity, suppose that f(x) g(x) and g(x) h(x). From calculus we know that f(x) g(x) = c1 and g(x) h(x) = c2, where c1 and c2 are both constants. Hence,









f(x)    h(x) = (f(x)    g(x)) + (g(x)    h(x)) = c1      c2









and f0(x)    h0(x) = 0.  Therefore, f(x)     h(x).









Example 17. For (x1; y1) and (x2; y2) in R2, de ne (x1; y1) (x2; y2) if x21 + y12 = x22 + y22. Then is an equivalence relation on R2.









Example 18. Let A and B be 2 2 matrices with entries in the real numbers. We can de ne an equivalence relation on the set of 2 2 matrices,
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by saying A





	
	



B if there exists an invertible matrix P  such that PAP   1  =





	



	
	
	
	
	
	
	
	
	



	



B.  For example, if





	
	
	
	



	
	
	
	
	



A =     11   12





	



and





	



B =      1118





	



2033   ;





	



	



then A





	
	



B since PAP   1  = B for





	
	
	



	
	
	
	
	



P =    12





	



35   :





	
	



	
	
	
	
	
	
	
	



	



Let I be the 2    2 identity matrix; that is,





	
	



	
	
	
	
	



I =    01





	



10   :





	
	




 







Then IAI 1 = IAI = A; therefore, the relation symmetry, suppose that A B. Then there exists such that PAP 1 = B. So









A = P   1BP = P   1B(P   1)  1









is re exive. To show an invertible matrix P













:









Finally, suppose that A B and matrices P and Q such that PAP 1









B C. Then there exist invertible = B and QBQ 1 = C. Since









C = QBQ  1  = QPAP   1Q  1  = (QP )A(QP )  1;









the relation is transitive. Two matrices that are equivalent in this manner are said to be similar.









A partition P of a set X  is a collection of nonempty sets X1; X2; : : :





S





such that Xi \ Xj = ; for i 6= j and k Xk = X. Let be an equivalence relation on a set X and let x 2 X. Then [x] = fy 2 X : y xg is called the equivalence class of x. We will see that an equivalence relation gives rise to a partition via equivalence classes. Also, whenever a partition of a set exists, there is some natural underlying equivalence relation, as the following theorem demonstrates.









Theorem 1.5 Given an equivalence relation on a set X, the equivalence classes of X form a partition of X. Conversely, if P = fXig is a partition of a set X, then there is an equivalence relation on X with equivalence classes





Xi.
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Proof. Suppose there exists an equivalence relation on the set X. For any x 2 X, the re exive property shows that x 2 [x] and so [x] is nonempty.





S





Clearly X = x2X [x]. Now let x; y 2 X. We need to show that either [x] = [y] or [x] \ [y] = ;. Suppose that the intersection of [x] and [y] is not empty and that z 2 [x] \ [y]. Then z x and z y. By symmetry and transitivity x y; hence, [x] [y]. Similarly, [y] [x] and so [x] = [y]. Therefore, any two equivalence classes are either disjoint or exactly the same.









Conversely, suppose that P = fXig is a partition of a set X. Let two elements be equivalent if they are in the same partition. Clearly, the relation is re exive. If x is in the same partition as y, then y is in the same partition as x, so x y implies y x. Finally, if x is in the same partition as y and y is in the same partition as z, then x must be in the same partition as z, and transitivity holds.









Corollary 1.6 Two equivalence classes of an equivalence relation are either disjoint or equal.









Let us examine some of the partitions given by the equivalence classes in the last set of examples.













Example 19. In the equivalence relation in Example  15, two pairs of integers, (p; q) and (r; s), are in the same equivalence class when they reduce to the same fraction in its lowest terms.













Example 20. In the equivalence relation in Example  16, two functions f(x) and g(x) are in the same partition when they di er by a constant.









Example 21. We de ned an equivalence class on R2 by (x1; y1) (x2; y2) if x21 + y12 = x22 + y22. Two pairs of real numbers are in the same partition when they lie on the same circle about the origin.









Example 22. Let r and s be two integers and suppose that n 2 N. We say that r is congruent to s modulo n, or r is congruent to s mod n, if r s is evenly divisible by n; that is, r s = nk for some k 2 Z. In this case we write r s (mod n). For example, 41 17 (mod 8) since 41 17 = 24 is divisible by 8. We claim that congruence modulo n forms an equivalence relation of Z. Certainly any integer r is equivalent to itself since r r = 0 is divisible by n. We will now show that the relation is symmetric. If r s (mod n), then r s = (s r) is divisible by n. So s r is divisible by n and
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s r (mod n). Now suppose that r s (mod n) and s t (mod n). Then there exist integers k and l such that r s = kn and s t = ln. To show transitivity, it is necessary to prove that r t is divisible by n. However,









r    t = r    s + s    t = kn + ln = (k + l)n;









and so r    t is divisible by n.









If we consider the equivalence relation established by the integers modulo 3, then









[0] = f: : : ; 3; 0; 3; 6; : : :g; [1] = f: : : ; 2; 1; 4; 7; : : :g; [2] = f: : : ; 1; 2; 5; 8; : : :g:









Notice that [0] [ [1] [ [2] = Z and also that the sets are disjoint. The sets [0], [1], and [2] form a partition of the integers.









The integers modulo n are a very important example in the study of abstract algebra and will become quite useful in our investigation of vari-ous algebraic structures such as groups and rings. In our discussion of the integers modulo n we have actually assumed a result known as the division algorithm, which will be stated and proved in Chapter  2.













Exercises









1.  Suppose that









A = fx : x 2 N and x is eveng;









B = fx : x 2 N and x is primeg;









C = fx : x 2 N and x is a multiple of 5g:











	
	



Describe each of the following sets.





	
	



	
	



(a)





	



A \ B





	



(c)





	



A [ B








	
	



(b)





	



B \ C





	



(d)





	



A \ (B [ C)








	



2.





	



If A = fa; b; cg, B = f1; 2; 3g, C = fxg, and D = ;, list all of the elements in








	
	



each of the following sets.
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(a)  A    B	(c)  A    B    C









(b)  B    A	(d)  A    D









3.  Find an example of two nonempty sets A and B for which A    B = B    A









is true.









4. 	Prove A [ ; = A and A \ ; = ;. 








	


Prove A [ B = B [ A and A \ B = B \ A. 











	


Prove A [ (B \ C) = (A [ B) \ (A [ C). 











	


Prove A \ (B [ C) = (A \ B) [ (A \ C). 












8.  Prove A     B if and only if A \ B = A.









9. 	Prove (A \ B)0 = A0 [ B0. 








	


Prove A [ B = (A \ B) [ (A n B) [ (B n A). 











	


Prove (A [ B)    C = (A    C) [ (B    C). 











	


Prove (A \ B) n B = ;. 











	


Prove (A [ B) n B = A n B. 











	


Prove A n (B [ C) = (A n B) \ (A n C). 











	


Prove A \ (B n C) = (A \ B) n (A \ C). 











	


Prove (A n B) [ (B n A) = (A [ B) n (A \ B). 











	


Which of the following relations f : Q ! Q de ne a mapping? In each case, supply a reason why f is or is not a mapping. 














	



(a)  f(p=q) = p + 1





	



(c)  f(p=q) = p + q





	
	



	



p    2





	



q2





	
	



	
	



3p2





	
	



	



3p





	
	



p





	



	



(b)  f(p=q) = 3q





	



(d)  f(p=q) = 7q2       q





	




 







18. 	Determine which of the following functions are one-to-one and which are onto. If the function is not onto, determine its range. 








	


f : R ! R de  ned by f(x) = ex 











	


f : Z ! Z de  ned by f(n) = n2 + 3 











	


f : R ! R de  ned by f(x) = sin x 











	


f : Z ! Z de  ned by f(x) = x2 











	


Let f : A ! B and g : B ! C be invertible mappings; that is, mappings such that f 1 and g 1 exist. Show that (g f) 1 = f 1 g 1. 











	


(a)  De  ne a function f : N ! N that is one-to-one but not onto. 
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(b)  De  ne a function f : N ! N that is onto but not one-to-one.








	



21.





	



Prove the relation de  ned on R2  by (x1; y1)     (x2; y2) if x21 + y12  = x22 + y22  is








	
	



an equivalence relation.





	



	



22.





	



Let f : A ! B and g : B ! C be maps.





	



	
	



(a)  If f and g are both one-to-one functions, show that g   f is one-to-one.










	


If g   f  is onto, show that g is onto. 











	


If g   f  is one-to-one, show that f  is one-to-one. 














	
	



(d)





	



If g   f  is one-to-one and f  is onto, show that g is one-to-one.








	
	



(e)





	



If g   f  is onto and g is one-to-one, show that f  is onto.





	



	



23.





	



De  ne a function on the real numbers by





	



	
	
	



x + 1





	



	
	
	



f(x) = x    1 :





	



	
	



What are the domain and range of f?  What is the inverse of f?





	



Compute










	


f   1  and f   1     f. 











	


Let f : X ! Y  be a map with A1; A2      X and B1; B2      Y . 











	


Prove f(A1 [ A2) = f(A1) [ f(A2). 











	


Prove f(A1 \ A2) f(A1) \ f(A2). Give an example in which equality fails. 











	


Prove f   1(B1 [ B2) = f   1(B1) [ f   1(B2), where 











	


1(B) = fx 2 X : f(x) 2 Bg: 











	


Prove f   1(B1 \ B2) = f   1(B1) \ f   1(B2). 











	


Prove f   1(Y  n B1) = X n f   1(B1). 











	


Determine whether or not the following relations are equivalence relations on the given set. If the relation is an equivalence relation, describe the partition given by it. If the relation is not an equivalence relation, state why it fails to be one. 














	
	



(a)





	



x     y in R if x     y





	



(c)





	



x     y in R if jx    yj    4








	
	



(b)





	



m     n in Z if mn > 0





	



(d)





	



m     n in Z if m     n  (mod 6)








	



26.





	



De2   ne2a relation     on R2 by stating that (a; b)     (c; d) if and only if a2 +b2








	
	



c  + d  .  Show that     is re  exive and transitive but not symmetric.








	



27.





	



Show that an m    n matrix gives rise to a well-de  ned map from Rn  to Rm.
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28. 	Find the error in the following argument by providing a counterexample. \The re exive property is redundant in the axioms for an equivalence relation. 









If x y, then y x by the symmetric property. Using the transitive property, we can deduce that x x." 








	


Projective Real Line. De ne a relation on R2 n (0; 0) by letting (x1; y1) (x2; y2) if there exists a nonzero real number such that (x1; y1) = ( x2; y2). Prove that de nes an equivalence relation on R2n(0; 0). What are the corre-sponding equivalence classes? This equivalence relation de nes the projective line, denoted by P(R), which is very important in geometry. 
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The Integers





































The integers are the building blocks of mathematics. In this chapter we will investigate the fundamental properties of the integers, including math-ematical induction, the division algorithm, and the Fundamental Theorem of Arithmetic.









2.1    Mathematical Induction









Suppose we wish to show that









1 + 2 + + n = n(n + 1) 2









for any natural number n. This formula is easily veri ed for small numbers such as n = 1, 2, 3, or 4, but it is impossible to verify for all natural numbers on a case-by-case basis. To prove the formula true in general, a more generic method is required.









Suppose we have veri ed the equation for the rst n cases. We will attempt to show that we can generate the formula for the (n + 1)th case from this knowledge. The formula is true for n = 1 since





1 = 1(1 + 1):









2 If we have veri ed the rst n cases, then









1 + 2 + + n + (n + 1) = n(n + 1) + n + 1 2









= n2 + 3n + 2 2









= (n + 1)[(n + 1) + 1]: 2
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This is exactly the formula for the (n + 1)th case.









This method of proof is known as mathematical induction. Instead of attempting to verify a statement about some subset S of the positive integers N on a case-by-case basis, an impossible task if S is an in nite set, we give a speci c proof for the smallest integer being considered, followed by a generic argument showing that if the statement holds for a given case, then it must also hold for the next case in the sequence. We summarize mathematical induction in the following axiom.









First Principle of Mathematical Induction. Let S(n) be a statement about integers for n 2 N and suppose S(n0) is true for some integer n0. If for all integers k with k n0 S(k) implies that S(k + 1) is true, then S(n) is true for all integers n greater than n0.









Example 1. For all integers n 3, 2n > n + 4. Since 8 = 23 > 3 + 4 = 7;









the statement is true for n0 = 3. Assume that 2k > k + 4 for k 3. Then 2k+1 = 2 2k > 2(k + 4). But









2(k + 4) = 2k + 8 > k + 5 = (k + 1) + 4









since k is positive. Hence, by induction, the statement holds for all integers n 3.









Example 2.  Every integer 10n+1 + 3   10n + 5 is divisible by 9 for n 2 N.





For n = 1,





101+1 + 3   10 + 5 = 135 = 9   15









is divisible by 9. Suppose that 10k+1 + 3 10k + 5 is divisible by 9 for k 1. Then











	



10(k+1)+1 + 3   10k+1 + 5 = 10k+2 + 3   10k+1 + 50    45





	



	



= 10(10k+1 + 3   10k + 5)    45





	



	



is divisible by 9.





	




 







Example 3. We will prove the binomial theorem using mathematical in-duction; that is,







	



(a + b)n =





	



n      nk   akbn   k;








	
	



X









 



k=0
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where a and b are real numbers, n 2 N, and





	
	
	
	



	
	



nk   = k!(nn!





	



k)!





	
	
	



	
	
	
	
	
	
	



	



is the binomial coe   cient.  We   rst show that





	
	
	
	



	



n +k 1    =    nk   +   k n





	



1   :





	



	
	
	
	
	
	
	



	



This result follows from





	
	
	
	
	
	



	



nk   +   k n





	



1    = k!(nn!  k)! + (k





	
	
	



1)!(nn!





	



k + 1)!








	
	
	
	
	
	



	
	



(n + 1)!





	
	
	
	
	



	
	



= k!(n + 1    k)!





	
	
	
	




 







= n + 1 : k









If n = 1, the binomial theorem is easy to verify. Now assume that the result is true for n greater than or equal to 1. Then









(a + b)n+1  = (a + b)(a + b)n







	



= (a + b)





	



n





	



nk   akbn   k!








	



k=0





	



	



X





	
	



	



= k=0n    nk   ak+1bn   k + k=0n    nk   akbn+1   k








	



X





	
	
	



X








	



= an+1 + k=1n    k





	



n 1   akbn+1   k + k=1n    nk   akbn+1   k + bn+1








	



X





	
	



X








	



= an+1 + k=1n      k n





	



1   +   nk     akbn+1   k + bn+1








	



X





	
	



	



= nk=0+1    n +k





	



1   akbn+1   k:








	



X





	
	
	




 







We have an equivalent statement of the Principle of Mathematical In-duction that is often very useful.









Second Principle of Mathematical Induction. Let S(n) be a statement about integers for n 2 N and suppose S(n0) is true for some integer n0. If
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S(n0); S(n0 +1); : : : ; S(k) imply that S(k+1) for k n0, then the statement S(n) is true for all integers n greater than n0.









A nonempty subset S of Z is well-ordered if S contains a least element. Notice that the set Z is not well-ordered since it does not contain a smallest element. However, the natural numbers are well-ordered.









Principle of Well-Ordering. Every nonempty subset of the natural num-bers is well-ordered.









The Principle of Well-Ordering is equivalent to the Principle of Mathe-matical Induction.









Lemma 2.1 The Principle of Mathematical Induction implies that 1 is the least positive natural number.









Proof. Let S = fn 2 N : n 1g. Then 1 2 S. Now assume that n 2 S; that is, n 1. Since n+1 1, n+1 2 S; hence, by induction, every natural number is greater than or equal to 1.









Theorem 2.2 The Principle of Mathematical Induction implies that the natural numbers are well-ordered.









Proof. We must show that if S is a nonempty subset of the natural num-bers, then S contains a smallest element. If S contains 1, then the theorem is true by Lemma  2.1. Assume that if S contains an integer k such that 1 k n, then S contains a smallest element. We will show that if a set S contains an integer less than or equal to n+1, then S has a smallest element. If S does not contain an integer less than n + 1, then n + 1 is the smallest integer in S. Otherwise, since S is nonempty, S must contain an integer less than or equal to n. In this case, by induction, S contains a smallest integer.













Induction can also be very useful in formulating de nitions. For instance, there are two ways to de ne n!, the factorial of a positive integer n.











	
	



The explicit  de  nition:  n! = 1   2   3     (n    1)   n.








	



The inductive  or recursive  de  nition:





	



1! = 1 and n! = n(n    1)! for








	
	



n > 1.





	




 







Every good mathematician or computer scientist knows that looking at prob-lems recursively, as opposed to explicitly, often results in better understand-ing of complex issues.
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2.2    The Division Algorithm









An application of the Principle of Well-Ordering that we will use often is the division algorithm.









Theorem 2.3 (Division Algorithm) Let a and b be integers, with b > 0. Then there exist unique integers q and r such that









a = bq + r









where 0     r < b.









Proof. This is a perfect example of the existence-and-uniqueness type of proof. We must rst prove that the numbers q and r actually exist. Then









we must show that if q0 and r0 are two other such numbers, then q = q0 and r = r0.





Existence of q and r.  Let









S = fa    bk : k 2 Z and a    bk     0g:









If 0 2 S, then b divides a, and we can let q = a=b and r = 0. If 0 2= S, we can use the Well-Ordering Principle. We must rst show that S is nonempty. If a > 0, then a b 0 2 S. If a < 0, then a b(2a) = a(1 2b) 2 S. In either case S 6= ;. By the Well-Ordering Principle, S must have a smallest member, say r = a bq. Therefore, a = bq + r, r 0. We now show that r < b. Suppose that r > b. Then









a    b(q + 1) = a    bq    b = r    b > 0:









In this case we would have a b(q + 1) in the set S. But then a b(q + 1) < a bq, which would contradict the fact that r = a bq is the smallest member of S. So r b. Since 0 2= S, r 6= b and so r < b.









Uniqueness of q and r. Suppose there exist integers r, r0, q, and q0 such that









a = bq + r;  0     r < b









and









a = bq0 + r0;  0     r0 < b:





Then bq + r = bq0 + r0.  Assume that r0     r.  From the last equation we have







	



b(q     q0) = r0     r; therefore, b must divide r0     r and 0     r0





	



r     r0





	



< b.








	



This is possible only if r0     r = 0.  Hence, r = r0 and q = q0.
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Let a and b be integers. If b = ak for some integer k, we write a j b. An integer d is called a common divisor of a and b if d j a and d j b. The greatest common divisor of integers a and b is a positive integer d such that d is a common divisor of a and b and if d0 is any other common divisor of a and b, then d0 j d. We write d = gcd(a; b); for example, gcd(24; 36) = 12 and gcd(120; 102) = 6. We say that two integers a and b are relatively prime if gcd(a; b) = 1.









Theorem 2.4 Let a and b be nonzero integers. Then there exist integers r and s such that









gcd(a; b) = ar + bs:









Furthermore, the greatest common divisor of a and b is unique.









Proof. Let









S = fam + bn : m; n 2 Z and am + bn > 0g:









Clearly, the set S is nonempty; hence, by the Well-Ordering Principle S must have a smallest member, say d = ar + bs. We claim that d = gcd(a; b). Write a = dq + r where 0 r < d . If r > 0, then









r 	= a    dq 








	


a    (ar + bs)q 











	


a    arq    bsq 











	


a(1    rq) + b(   sq); 












which is in S. But this would contradict the fact that d is the smallest member of S. Hence, r = 0 and d divides a. A similar argument shows that d divides b. Therefore, d is a common divisor of a and b.









Suppose that d0 is another common divisor of a and b, and we want to show that d0 j d. If we let a = d0h and b = d0k, then









d = ar + bs = d0hr + d0ks = d0(hr + ks):









So d0 must divide d. Hence, d must be the unique greatest common divisor of a and b.









Corollary 2.5 Let a and b be two integers that are relatively prime. Then there exist integers r and s such that ar + bs = 1.
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The Euclidean Algorithm









Among other things, Theorem  2.4 allows us to compute the greatest common divisor of two integers.













Example 4. Let us compute the greatest common divisor of 945 and 2415. First observe that









2415 = 945   2 + 525









945 = 525   1 + 420









525 = 420   1 + 105









420 = 105   4 + 0:









Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and 105 divides 2415. Hence, 105 divides both 945 and 2415. If d were another common divisor of 945 and 2415, then d would also have to divide 105. Therefore, gcd(945; 2415) = 105.









If we work backward through the above sequence of equations, we can also obtain numbers r and s such that 945r + 2415s = 105. Observe that









105 = 525 + (   1)   420









= 525 + (   1)   [945 + (   1)   525]









= 2 525 + ( 1) 945 = 2 [2415 + ( 2) 945] + ( 1) 945 = 2 2415 + ( 5) 945:













So r = 5 and s = 2. Notice that r and s are not unique, since r = 41 and s = 16 would also work.









To compute gcd(a; b) = d, we are using repeated divisions to obtain a decreasing sequence of positive integers r1 > r2 > > rn = d; that is,











	



b





	



= aq1 + r1








	



a





	



= r1q2 + r2








	



r1





	



= r2q3 + r3








	



.





	



	



.





	



	



.





	



	



rn   2





	



= rn   1qn + rn








	



rn   1





	



= rnqn+1:
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To nd r and s such that ar + bs = d, we begin with this last equation and substitute results obtained from the previous equations:









d = rn




	


rn   2      rn   1qn 




	


rn   2      qn(rn   3      qn   1rn   2) 











	


qnrn   3 + (1 + qnqn   1)rn   2 




...








= ra + sb:












The algorithm that we have just used to nd the greatest common divisor d of two integers a and b and to write d as the linear combination of a and b is known as the Euclidean algorithm.









Prime Numbers









Let p be an integer such that p > 1. We say that p is a prime number, or simply p is prime, if the only positive numbers that divide p are 1 and p itself. An integer n > 1 that is not prime is said to be composite.









Lemma 2.6 (Euclid) Let a and b be integers and p be a prime number. If p j ab, then either p j a or p j b.









Proof. Suppose that p does not divide a. We must show that p j b. Since gcd(a; p) = 1, there exist integers r and s such that ar + ps = 1. So









b = b(ar + ps) = (ab)r + p(bs):









Since p divides both ab and itself, p must divide b = (ab)r + p(bs).









Theorem 2.7 (Euclid)  There exist an in  nite number of primes.









Proof. We will prove this theorem by contradiction. Suppose that there are only a nite number of primes, say p1; p2; : : : ; pn. Let p = p1p2 pn +1. We will show that p must be a di erent prime number, which contradicts the assumption that we have only n primes. If p is not prime, then it must be divisible by some pi for 1 i n. In this case pi must divide p1p2 pn and also divide 1. This is a contradiction, since p > 1.
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Theorem 2.8 (Fundamental Theorem of Arithmetic) Let n be an integer such that n > 1. Then









n = p1p2       pk;









where p1; : : : ; pk are primes (not necessarily distinct). Furthermore, this factorization is unique; that is, if









n = q1q2       ql;









then k = l and the qi's are just the pi's rearranged.









Proof. Uniqueness. To show uniqueness we will use induction on n. The theorem is certainly true for n = 2 since in this case n is prime. Now assume that the result holds for all integers m such that 1 m < n, and











	
	
	



n = p1p2       pk  = q1q2       ql;





	
	



	



where  p1         p2pk  and  q1





	



q2ql.





	



By  Lemma   2.6,








	



p1





	



j qi  for  some  i





	



=  1; : : : ; l  and  q1





	



j pj  for  some  j





	



=  1; : : : ; k.   Since  all









 



of the pi's and qi's are prime, p1 = qi and q1 = pj. Hence, p1 = q1 since p1 pj = q1 qi = p1. By the induction hypothesis,









n0 = p2       pk  = q2       ql









has a unique factorization. Hence, k = l and qi = pi for i = 1; : : : ; k. Existence. To show existence, suppose that there is some integer that









cannot be written as the product of primes. Let S be the set of all such numbers. By the Principle of Well-Ordering, S has a smallest number, say a. If the only positive factors of a are a and 1, then a is prime, which is a contradiction. Hence, a = a1a2 where 1 < a1 < a and 1 < a2 < a. Neither a1 2 S nor a2 2 S, since a is the smallest element in S. So







	



a1





	



= p1       pr





	
	



	



a2





	



= q1       qs:





	
	



	



Therefore,





	
	
	



	



a = a1a2  = p1       prq1       qs:





	
	



	



So a 2= S, which is a contradiction.





	
	




 







Historical Note
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Prime numbers were rst studied by the ancient Greeks. Two important results from antiquity are Euclid's proof that an in nite number of primes exist and the Sieve of Eratosthenes, a method of computing all of the prime numbers less than a xed positive integer n. One problem in number theory is to nd a function f such that f(n) is prime for each integer n. Pierre Fermat (1601?{1665) conjectured that 22n + 1 was prime for all n, but later it was shown by Leonhard Euler (1707{1783) that









225  + 1 = 4,294,967,297









is a composite number. One of the many unproven conjectures about prime numbers is Goldbach's Conjecture. In a letter to Euler in 1742, Christian Goldbach stated the conjecture that every even integer with the exception of 2 seemed to be the sum of two primes: 4 = 2+2, 6 = 3+3, 8 = 3+5, : : :. Although the conjecture has been veri ed for the numbers up through 100 million, it has yet to be proven in general. Since prime numbers play an important role in public key cryptography, there is currently a great deal of interest in determining whether or not a large number is prime.









Exercises









1.  Prove that









12 + 22 + + n2 = n(n + 1)(2n + 1) 6









for n 2 N.









2.  Prove that









13 + 23 + + n3 = n2(n + 1)2 4









for n 2 N.









3. 	Prove that n! > 2n  for n     4. 








	


Prove that 












x + 4x + 7x + + (3n 2)x = n(3n 1)x 2









for n 2 N.









5.  Prove that 10n+1 + 10n + 1 is divisible by 3 for n 2 N.









6.  Prove that 4   102n + 9   102n   1 + 5 is divisible by 99 for n 2 N.





7.  Show that







	
	



n








	



pna1a2       an      n1





	



kX=1 ak:










	


Prove the Leibniz rule for f(n)(x), where f(n) is the nth derivative of f; that is, show that 











	






	


n 	f(k)(x)g(n   k)(x): 




k








k=0
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9.





	



Use induction to prove that 1 + 2 + 22 +      + 2n = 2n+1      1 for n 2 N.








	



10.





	



Prove that





	
	
	



	
	



1





	



1





	



1





	



n








	
	



2 + 6





	



+      + n(n + 1) = n + 1








	
	



for n 2 N.





	
	
	



	



11.





	



If  x  is  a  nonnegative  real  number,  then  show  that  (1 + x)n      1      nx  for









 



n = 0; 1; 2; : : :. 








	


Power Sets. Let X be a set. De ne the power set of X, denoted P(X), to be the set of all subsets of X. For example, 












P(fa; bg) = f;; fag; fbg; fa; bgg:









For every positive integer n, show that a set with exactly n elements has a power set with exactly 2n elements.









13. 	Prove that the two principles of mathematical induction stated in Section  2.1 are equivalent. 








	


Show  that  the  Principle  of  Well-Ordering  for  the  natural  numbers  implies 












that 1 is the smallest natural number. Use this result to show that the Principle of Well-Ordering implies the Principle of Mathematical Induction; that is, show that if S N such that 1 2 S and n + 1 2 S whenever n 2 S, then S = N.











	



15.





	



For each of the following pairs of numbers a and b, calculate gcd(a; b) and








	
	



nd integers r and s such that gcd(a; b) = ra + sb.








	
	



(a)





	



14 and 39





	



(d)





	



471 and 562








	
	



(b)





	



234 and 165





	



(e)





	



23,771 and 19,945








	
	



(c)





	



1739 and 9923





	



(f)





	



4357 and 3754









 







16. 	Let a and b be nonzero integers. If there exist integers r and s such that ar + bs = 1, show that a and b are relatively prime. 








	


Fibonacci Numbers. The Fibonacci numbers are 












1; 1; 2; 3; 5; 8; 13; 21; : : : :









We can de ne them inductively by f1 = 1, f2 = 1, and fn+2 = fn+1 + fn for n 2 N.







	



(a)  Prove that fn < 2n.





	



	



(b)  Prove that fn+1fn   1  = fn2 + (   1)n, n     2.





	



	



(c)  Prove that fn = [(1 + p5 )n     (1    p5 )n]=2np





	



5.








	



p





	



	



(d)  Show that limn!1 fn=fn+1  = (   5    1)=2.
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(e)  Prove that fn  and fn+1  are relatively prime.





	



	



18.





	



Let a and b be integers such that gcd(a; b) = 1.  Let r and s be integers such








	
	



that ar + bs = 1.  Prove that





	



	
	



gcd(a; s) = gcd(r; b) = gcd(r; s) = 1:





	



	



19.





	



Let x; y 2 N be relatively prime.  If xy is a perfect square, prove that x and








	
	



y must both be perfect squares.





	




 







20. 	Using the division algorithm, show that every perfect square is of the form 4k or 4k + 1 for some nonnegative integer k. 









21.  Suppose that a; b; r; s are coprime and that









a2 + b2  = r2









a2      b2  = s2:











	
	



Prove that a, r, and s are odd and b is even.








	



22.





	



Let n 2 N. Use the division algorithm to prove that every integer is congruent








	
	



mod n to precisely one of the integers 0; 1; : : : ; n    1.  Conclude that if r is








	
	



an integer, then there is exactly one s in Z such that 0     s < n and [r] = [s].








	
	



Hence, the integers are indeed partitioned by congruence mod n.








	



23.





	



De  ne  the  least  common  multiple  of  two  nonzero  integers  a  and  b,








	
	



denoted by lcm(a; b), to be the nonnegative integer m such that both a and








	
	



b divide m, and if a and b divide any other integer n, then m also divides n.








	
	



Prove that any two integers a and b have a unique least common multiple.








	



24.





	



If d = gcd(a; b) and m = lcm(a; b), prove that dm = jabj.








	



25.





	



Show that lcm(a; b) = ab if and only if gcd(a; b) = 1.








	



26.





	



Prove that gcd(a; c) = gcd(b; c) = 1 if and only if gcd(ab; c) = 1 for integers








	
	



a, b, and c.








	



27.





	



Let a; b; c 2 Z.  Prove that if gcd(a; b) = 1 and a j bc, then a j c.








	



28.





	



Let p     2.  Prove that if 2p     1 is prime, then p must also be prime.








	



29.





	



Prove that there are an in  nite number of primes of the form 6n + 1.








	



30.





	



Prove that there are an in  nite number of primes of the form 4n    1.








	



31.





	



Using the fact that 2 is prime, show that there do not exist integers p and








	
	



q such that p2  = 2q2.  Demonstrate that therefore p2 cannot be a rational








	
	



number.
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Programming Exercises









1. 	The Sieve of Eratosthenes. One method of computing all of the prime numbers less than a certain xed positive integer N is to list all of the numbers n such that 1 < n < N. Begin by eliminating all of the multiples of 2. Next eliminate all of the multiples of 3. Now eliminate all of the multiples of 5. 









Notice that 4 has already been crossed out. Continue in this manner, noticing p









that we do not have to go all the way to N; it su ces to stop at N. Using this method, compute all of the prime numbers less than N = 250. We can also use this method to nd all of the integers that are relatively prime to an integer N. Simply eliminate the prime factors of N and all of their multiples. Using this method, nd all of the numbers that are relatively prime to N = 120. Using the Sieve of Eratosthenes, write a program that will compute all of the primes less than an integer N.









2. Let N0 = N [ f0g. Ackermann's function is the function A : N0 N0 ! N0 de ned by the equations









A(0; y) = y + 1;









A(x + 1; 0) = A(x; 1);









A(x + 1; y + 1) = A(x; A(x + 1; y)):









Use this de nition to compute A(3; 1). Write a program to evaluate Ack-ermann's function. Modify the program to count the number of statements executed in the program when Ackermann's function is evaluated. How many statements are executed in the evaluation of A(4; 1)? What about A(5; 1)?









3. 	Write a computer program that will implement the Euclidean algorithm. The program should accept two positive integers a and b as input and should output gcd(a; b) as well as integers r and s such that 









gcd(a; b) = ra + sb:
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Groups





































We begin our study of algebraic structures by investigating sets associated with single operations that satisfy certain reasonable axioms; that is, we want to de ne an operation on a set in a way that will generalize such familiar structures as the integers Z together with the single operation of addition, or invertible 2 2 matrices together with the single operation of matrix multiplication. The integers and the 2 2 matrices, together with their respective single operations, are examples of algebraic structures known as groups.









The theory of groups occupies a central position in mathematics. Modern group theory arose from an attempt to nd the roots of a polynomial in terms of its coe cients. Groups now play a central role in such areas as coding theory, counting, and the study of symmetries; many areas of biology, chemistry, and physics have bene ted from group theory.









3.1    The Integers mod n and Symmetries









Let us now investigate some mathematical structures that can be viewed as sets with single operations.









The Integers mod n









The integers mod n have become indispensable in the theory and appli-cations of algebra. In mathematics they are used in cryptography, coding theory, and the detection of errors in identi cation codes.









We have already seen that two integers a and b are equivalent mod n if n divides a b. The integers mod n also partition Z into n di erent equivalence classes; we will denote the set of these equivalence classes by
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Zn. Consider the integers modulo 12 and the corresponding partition of the integers:









[0] 	= f: : : ;   12; 0; 12; 24; : : :g; 








	


= f: : : ;   11; 1; 13; 25; : : :g; 




...








[11] = f: : : ;   1; 11; 23; 35; : : :g:












When no confusion can arise, we will use 0; 1; : : : ; 11 to indicate the equiva-lence classes [0]; [1]; : : : ; [11] respectively. We can do arithmetic on Zn. For two integers a and b, de ne addition modulo n to be (a+b) (mod n); that is, the remainder when a + b is divided by n. Similarly, multiplication modulo n is de ned as (ab) (mod n), the remainder when ab is divided by n.









Table 3.1. Multiplication table for Z8
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0
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Example 1. The following examples illustrate integer arithmetic modulo n:











	



7 + 4     1





	



(mod 5)





	



7   3     1





	



(mod 5)








	



3 + 5     0





	



(mod 8)





	



3   5     7





	



(mod 8)








	



3 + 4     7





	



(mod 12)





	



3   4     0





	



(mod 12).









 







In particular, notice that it is possible that the product of two nonzero numbers modulo n can be equivalent to 0 modulo n.













Example 2. Most, but not all, of the usual laws of arithmetic hold for addition and multiplication in Zn. For instance, it is not necessarily true that there is a multiplicative inverse. Consider the multiplication table for
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Z8 in Table  3.1. Notice that 2, 4, and 6 do not have multiplicative inverses; that is, for n = 2, 4, or 6, there is no integer k such that kn 1 (mod 8).













Proposition 3.1 Let Zn be the set of equivalence classes of the integers mod n and a; b; c 2 Zn.











	



1.





	



Addition and multiplication are commutative:








	
	



a + b     b + a





	
	



(mod n)








	
	



ab     ba





	



(mod n):








	



2.





	



Addition and multiplication are associative:





	



	
	



(a + b) + c     a + (b + c)





	



(mod n)








	
	



(ab)c     a(bc)





	
	



(mod n):








	



3.





	



There are both an additive and a multiplicative identity:








	
	



a + 0     a





	
	



(mod n)








	
	



a  1     a





	
	



(mod n):








	



4.





	



Multiplication distributes over addition:





	



	
	



a(b + c)     ab + ac





	



(mod n):








	



5.





	



For every integer a there is an additive inverse    a:








	
	



a + (   a)     0





	



(mod n):








	



6.





	



Let a be a nonzero integer.  Then gcd(a; n) = 1 if and only if there ex-








	
	



ists a multiplicative inverse b for a  (mod n); that is, a nonzero integer








	
	



b such that





	
	
	
	



	
	



ab     1





	



(mod n):





	




 







Proof. We will prove (1) and (6) and leave the remaining properties to be proven in the exercises.









(1) Addition and multiplication are commutative modulo n since the remainder of a + b divided by n is the same as the remainder of b + a divided by n.
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(6) Suppose that gcd(a; n) = 1. Then there exist integers r and s such that ar + ns = 1. Since ns = 1 ar, ra 1 (mod n). Letting b be the equivalence class of r, ab 1 (mod n).









Conversely, suppose that there exists a b such that ab 1 (mod n). Then n divides ab 1, so there is an integer k such that ab nk = 1. Let d = gcd(a; n). Since d divides ab nk, d must also divide 1; hence, d = 1.











	
	
	
	
	
	
	
	



	



Symmetries





	
	
	
	
	
	
	



	
	



Figure 3.1. Rigid motions of a rectangle
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A symmetry of a geometric gure is a rearrangement of the gure pre-serving the arrangement of its sides and vertices as well as its distances and angles. A map from the plane to itself preserving the symmetry of an object is called a rigid motion. For example, if we look at the rectangle in Fig-ure  3.1, it is easy to see that a rotation of 180 or 360 returns a rectangle in the plane with the same orientation as the original rectangle and the same
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relationship among the vertices. A re ection of the rectangle across either the vertical axis or the horizontal axis can also be seen to be a symmetry. However, a 90 rotation in either direction cannot be a symmetry unless the rectangle is a square.











	
	



Figure 3.2. Symmetries of a triangle
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Let us nd the symmetries of the equilateral triangle 4ABC. To nd a symmetry of 4ABC, we must rst examine the permutations of the vertices A, B, and C and then ask if a permutation extends to a symmetry of the triangle. Recall that a permutation of a set S is a one-to-one and onto map : S ! S. The three vertices have 3! = 6 permutations, so the triangle
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has at most six symmetries. To see that there are six permutations, observe there are three di erent possibilities for the rst vertex, and two for the second, and the remaining vertex is determined by the placement of the rst two. So we have 3 2 1 = 3! = 6 di erent arrangements. To denote the permutation of the vertices of an equilateral triangle that sends A to B, B to C, and C to A, we write the array




 








	


B   C 




	


C   A   : 












Notice that this particular permutation corresponds to the rigid motion of rotating the triangle by 120 in a clockwise direction. In fact, every permutation gives rise to a symmetry of the triangle. All of these symmetries are shown in Figure  3.2.









A natural question to ask is what happens if one motion of the trian-gle 4ABC is followed by another. Which symmetry is 1 1; that is, what happens when we do the permutation 1 and then the permutation 1? Re-member that we are composing functions here. Although we usually multiply left to right, we compose functions right to left. We have









( 1 1)(A) = 1( 1(A)) = 1(B) = C ( 1 1)(B) = 1( 1(B)) = 1(C) = B ( 1 1)(C) = 1( 1(C)) = 1(A) = A:









This is the same symmetry as 2. Suppose we do these motions in the opposite order, 1 then 1. It is easy to determine that this is the same as the symmetry 3; hence, 1 1 6= 1 1. A multiplication table for the symmetries of an equilateral triangle 4ABC is given in Table  3.2.









Notice that in the multiplication table for the symmetries of an equilat-eral triangle, for every motion of the triangle there is another motion 0 such that 0 = id; that is, for every motion there is another motion that takes the triangle back to its original orientation.









3.2    De  nitions and Examples









The integers mod n and the symmetries of a triangle or a rectangle are both examples of groups. A binary operation or law of composition on a set









G is a function G G ! G that assigns to each pair (a; b) 2 G G a unique element a b, or ab in G, called the composition of a and b. A group (G; ) is a set G together with a law of composition (a; b) 7!a b that satis es the following axioms.
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Table 3.2. Symmetries of an equilateral triangle
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The law of composition is associative.  That is,









 







(a   b)   c = a   (b   c)









for a; b; c 2 G.




 

	There exists an element e 2 G, called the identity element, such that for any element a 2 G 




	


a = a   e = a: 












For each element a 2 G, there exists an inverse element in G, denoted by a 1, such that 








	


a  1  = a  1     a = e: 












A group G with the property that a b = b a for all a; b 2 G is called abelian or commutative. Groups not satisfying this property are said to be nonabelian or noncommutative.









Example 3. The integers Z = f: : : ; 1; 0; 1; 2; : : :g form a group under the operation of addition. The binary operation on two integers m; n 2 Z is just their sum. Since the integers under addition already have a well-established notation, we will use the operator + instead of ; that is, we shall write m+n instead of m n. The identity is 0, and the inverse of n 2 Z is written as n instead of n 1. Notice that the integers under addition have the additional property that m + n = n + m and are therefore an abelian group.









Most of the time we will write ab instead of a b; however, if the group already has a natural operation such as addition in the integers, we will use that operation. That is, if we are adding two integers, we still write m + n,
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Table 3.3. Cayley table for (Z5; +)
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n for the inverse, and 0 for the identity as usual. We also write m n instead of m + ( n).









It is often convenient to describe a group in terms of an addition or multiplication table. Such a table is called a Cayley table.













Example 4. The integers mod n form a group under addition modulo n. Consider Z5, consisting of the equivalence classes of the integers 0, 1, 2, 3, and 4. We de ne the group operation on Z5 by modular addition. We write the binary operation on the group additively; that is, we write m + n. The element 0 is the identity of the group and each element in Z5 has an inverse. For instance, 2 + 3 = 3 + 2 = 0. Table  3.3 is a Cayley table for Z5. By Proposition  3.1, Zn = f0; 1; : : : ; n 1g is a group under the binary operation of addition mod n.













Example 5. Not every set with a binary operation is a group. For example, if we let modular multiplication be the binary operation on Zn, then Zn fails to be a group. The element 1 acts as a group identity since 1 k = k 1 = k for any k 2 Zn; however, a multiplicative inverse for 0 does not exist since 0 k = k 0 = 0 for every k in Zn. Even if we consider the set Zn n f0g, we still may not have a group. For instance, let 2 2 Z6. Then 2 has no multiplicative inverse since











	



0   2 = 0





	



1   2





	



= 2








	



2   2 = 4





	



3   2





	



= 0








	



4   2 = 2





	



5   2





	



= 4:









 







By Proposition  3.1, every nonzero k does have an inverse in Zn if k is relatively prime to n. Denote the set of all such nonzero elements in Zn by U(n). Then U(n) is a group called the group of units of Zn. Table  3.4 is a Cayley table for the group U(8).
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Table 3.4. Multiplication table for U(8)
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Example 6. The symmetries of an equilateral triangle described in Sec-tion  3.1 form a nonabelian group. As we observed, it is not necessarily true that = for two symmetries and . Using Table  3.2, which is a Cayley table for this group, we can easily check that the symmetries of an equilateral triangle are indeed a group. We will denote this group by either S3 or D3, for reasons that will be explained later.









Example 7. We use M2(R) to denote the set of all 2 2 matrices. Let GL2(R) be the subset of M2(R) consisting of invertible matrices; that is, a matrix









a b A = c d









is in GL2(R) if there exists a matrix A 1 such that AA 1 = A 1A = I, where I is the 2 2 identity matrix. For A to have an inverse is equivalent to requiring that the determinant of A be nonzero; that is, det A = ad bc 6= 0. The set of invertible matrices forms a group called the general linear group. The identity of the group is the identity matrix











	



I =    01





	



10   :





	
	



	



The inverse of A 2 GL2(R) is





	
	



bc     dc





	



ab   :





	



	



A  1  = ad
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The product of two invertible matrices is again invertible. Matrix multipli-cation is associative, satisfying the other group axiom. For matrices it is not true in general that AB 6= BA; hence, GL2(R) is another example of a nonabelian group.
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Example 8. Let
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J =    0i
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K =    0i





	



0i   ;





	




 







where i2 = 1. Then the relations I2 = J2 = K2 = 1, IJ = K, JK = I, KI = J, JI = K, KJ = I, and IK = J hold. The set Q8 = f 1; I; J; Kg is a group called the quaternion group. Notice that Q8







	



is noncommutative.





	



	



Example 9.  Let C  be the set of nonzero complex numbers.





	



Under the









 



operation of multiplication C forms a group. The identity is 1. If z = a+bi is a nonzero complex number, then









z 1 = a bi a2 + b2









is the inverse of z.  It is easy to see that the remaining group axioms hold.













A group is nite, or has nite order, if it contains a nite number of elements; otherwise, the group is said to be in nite or to have in nite order. The order of a nite group is the number of elements that it con-tains. If G is a group containing n elements, we write jGj = n. The group Z5 is a nite group of order 5; the integers Z form an in nite group under addition, and we sometimes write jZj = 1.









Basic Properties of Groups









Proposition 3.2 The identity element in a group G is unique; that is, there exists only one element e 2 G such that eg = ge = g for all g 2 G.









Proof. Suppose that e and e0 are both identities in G. Then eg = ge = g and e0g = ge0 = g for all g 2 G. We need to show that e = e0. If we think of e as the identity, then ee0 = e0; but if e0 is the identity, then ee0 = e. Combining these two equations, we have e = ee0 = e0.









Inverses in a group are also unique. If g0 and g00 are both inverses of an element g in a group G, then gg0 = g0g = e and gg00 = g00g = e. We want to show that g0 = g00, but g0 = g0e = g0(gg00) = (g0g)g00 = eg00 = g00. We





summarize this fact in the following proposition.
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Proposition 3.3 g 1, is unique.









Proposition 3.4









If g is any element in a group G, then the inverse of g,













Let G be a group.  If a; b 2 G, then (ab)  1  = b  1a  1.





Proof.  Let  a; b  2 G.   Then  abb  1a  1  =  aea  1  =  aa  1  =  e.   Similarly,









b 1a 1ab = e. But by the previous proposition, inverses are unique; hence, (ab) 1 = b 1a 1.









Proposition 3.5  Let G be a group.  For any a 2 G, (a  1)  1  = a.









Proof. Observe that a 1(a 1) 1 = e. Consequently, multiplying both sides of this equation by a, we have









(a  1)  1  = e(a  1)  1  = aa  1(a  1)  1  = ae = a:













It makes sense to write equations with group elements and group opera-tions. If a and b are two elements in a group G, does there exist an element x 2 G such that ax = b? If such an x does exist, is it unique? The following proposition answers both of these questions positively.









Proposition 3.6 Let G be a group and a and b be any two elements in G. Then the equations ax = b and xa = b have unique solutions in G.









Proof. Suppose that ax = b. We must show that such an x exists. Multi-plying both sides of ax = b by a 1, we have x = ex = a 1ax = a 1b.





To show uniqueness, suppose that x1 and x2 are both solutions of ax = b; then ax1 = b = ax2. So x1 = a 1ax1 = a 1ax2 = x2. The proof for the existence and uniqueness of the solution of xa = b is similar.









Proposition 3.7 If G is a group and a; b; c 2 G, then ba = ca implies b = c and ab = ac implies b = c.









This proposition tells us that the right and left cancellation laws are true in groups. We leave the proof as an exercise.









We can use exponential notation for groups just as we do in ordinary algebra. If G is a group and g 2 G, then we de ne g0 = e. For n 2 N, we de ne







	



gn = g   g     g





	



	



and





	



| n times{z }





	



	



g  n = g  1    g  1       g  1 :








	



|





	



n times{z





	



}
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Theorem 3.8 In a group, the usual laws of exponents hold; that is, for all g; h 2 G,











	



1.





	



gmgn = gm+n  for all m; n 2 Z;








	



2.





	



(gm)n = gmn  for all m; n 2 Z;










	


(gh)n = (h  1g  1)  n  for all n 2 Z.  Furthermore, if G is abelian, then 












(gh)n = gnhn. 









We will leave the proof of this theorem as an exercise. Notice that (gh)n 6= gnhn in general, since the group may not be abelian. If the group is Z or Zn, we write the group operation additively and the exponential operation multiplicatively; that is, we write ng instead of gn. The laws of exponents now become









1.  mg + ng = (m + n)g for all m; n 2 Z;









2. 	m(ng) = (mn)g for all m; n 2 Z; 








	


m(g + h) = mg + mh for all n 2 Z. 












It is important to realize that the last statement can be made only because Z and Zn are commutative groups.









Historical Note









Although the rst clear axiomatic de nition of a group was not given until the late 1800s, group-theoretic methods had been employed before this time in the development of many areas of mathematics, including geometry and the theory of algebraic equations.









Joseph-Louis Lagrange used group-theoretic methods in a 1770{1771 memoir to









study methods of solving polynomial equations. Later, Evariste Galois (1811{1832) succeeded in developing the mathematics necessary to determine exactly which polynomial equations could be solved in terms of the polynomials' coe cients. Galois' primary tool was group theory.









The study of geometry was revolutionized in 1872 when Felix Klein proposed that geometric spaces should be studied by examining those properties that are invariant under a transformation of the space. Sophus Lie, a contemporary of Klein, used group theory to study solutions of partial di erential equations. One of the rst modern treatments of group theory appeared in William Burnside's The Theory of Groups of Finite Order [1], rst published in 1897.
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3.3    Subgroups









De  nitions and Examples









Sometimes we wish to investigate smaller groups sitting inside a larger group. The set of even integers 2Z = f: : : ; 2; 0; 2; 4; : : :g is a group under the operation of addition. This smaller group sits naturally inside of the group of integers under addition. We de ne a subgroup H of a group G to be a subset H of G such that when the group operation of G is restricted to H, H is a group in its own right. Observe that every group G with at least two elements will always have at least two subgroups, the subgroup consisting of the identity element alone and the entire group itself. The subgroup H = feg of a group G is called the trivial subgroup. A subgroup that is a proper subset of G is called a proper subgroup. In many of the examples that we have investigated up to this point, there exist other subgroups besides the trivial and improper subgroups.









Example 10. Consider the set of nonzero real numbers, R , with the group operation of multiplication. The identity of this group is 1 and the inverse of any element a 2 R is just 1=a. We will show that









Q  = fp=q : p and q are nonzero integersg









is a subgroup of R . The identity of R is 1; however, 1 = 1=1 is the quotient of two nonzero integers. Hence, the identity of R is in Q . Given two elements in Q , say p=q and r=s, their product pr=qs is also in Q . The inverse of any element p=q 2 Q is again in Q since (p=q) 1 = q=p. Since multiplication in R is associative, multiplication in Q is associative.









Example 11. Recall that C is the multiplicative group of nonzero complex numbers. Let H = f1; 1; i; ig. Then H is a subgroup of C . It is quite easy to verify that H is a group under multiplication and that H C .









Example 12. Let SL2(R) be the subset of GL2(R) consisting of matrices of determinant one; that is, a matrix









a b A = c d









is in SL2(R) exactly when ad bc = 1. To show that SL2(R) is a subgroup of the general linear group, we must show that it is a group under matrix
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multiplication. The 2 2 identity matrix is in SL2(R), as is the inverse of the matrix A:









A 1 = d b : c a









It remains to show that multiplication is closed; that is, that the product of two matrices of determinant one also has determinant one. We will leave







	



this  task  as  an  exercise.





	



The  group  SL2(R)  is  called  the  special  linear








	



group.





	




 







Example 13. It is important to realize that a subset H of a group G can be a group without being a subgroup of G. For H to be a subgroup of G it must inherit G's binary operation. The set of all 2 2 matrices, M2(R), forms a group under the operation of addition. The 2 2 general linear group is a subset of M2(R) and is a group under matrix multiplication, but it is not a subgroup of M2(R). If we add two invertible matrices, we do not necessarily obtain another invertible matrix. Observe that











	



01   10   +     01





	



01    =    00





	



00





	



;








	



but the zero matrix is not in GL2(R).





	
	
	




 







Example 14. One way of telling whether or not two groups are the same is by examining their subgroups. Other than the trivial subgroup and the group itself, the group Z4 has a single subgroup consisting of the elements 0 and 2. From the group Z2, we can form another group of four elements as follows. As a set this group is Z2 Z2. We perform the group operation coordinatewise; that is, (a; b)+(c; d) = (a+c; b+d). Table  3.5 is an addition table for Z2 Z2. Since there are three nontrivial proper subgroups of Z2 Z2, H1 = f(0; 0); (0; 1)g, H2 = f(0; 0); (1; 0)g, and H3 = f(0; 0); (1; 1)g, Z4 and







	



Z2      Z2  must be di  erent groups.





	
	
	
	
	



	
	
	



(0,0)





	



(0,1)





	



(1,0)





	



(1,1)





	
	



	



+





	
	
	
	
	
	



	
	



(0,0)





	



(0,0)





	



(0,1)





	



(1,0)





	



(1,1)





	
	



	



(0,1)





	



(0,1)





	



(0,0)





	



(1,1)





	



(1,0)





	
	



	



(1,0)





	



(1,0)





	



(1,1)





	



(0,0)





	



(0,1)





	
	



	



(1,1)





	



(1,1)





	



(1,0)





	



(0,1)





	



(0,0)





	
	



	
	
	
	
	
	
	
	




 







Table 3.5. Addition table for Z2      Z2
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Some Subgroup Theorems









Let us examine some criteria for determining exactly when a subset of a group is a subgroup.









Proposition 3.9 A subset H of G is a subgroup if and only if it satis es the following conditions.









1. 	The identity e of G is in H. 








	


If h1; h2  2 H, then h1h2  2 H. 











	


If h 2 H, then h  1  2 H. 












Proof. First suppose that H is a subgroup of G. We must show that the three conditions hold. Since H is a group, it must have an identity eH . We must show that eH = e, where e is the identity of G. We know that eH eH = eH and that eeH = eH e = eH ; hence, eeH = eH eH . By right-hand cancellation, e = eH . The second condition holds since a subgroup H is a group. To prove the third condition, let h 2 H. Since H is a group, there is an element h0 2 H such that hh0 = h0h = e. By the uniqueness of the inverse in G, h0 = h 1.









Conversely, if the three conditions hold, we must show that H is a group under the same operation as G; however, these conditions plus the associa-tivity of the binary operation are exactly the axioms stated in the de nition of a group.









Proposition 3.10 Let H be a subset of a group G. Then H is a subgroup of G if and only if H 6= ;, and whenever g; h 2 H then gh 1 is in H.









Proof. Let H be a nonempty subset of G.  Then H contains some element







	



g.  So gg  1  = e is in H.  If g





	



2





	



H, then eg  1  = g  1  is also in H.  Finally,





	



	



let  g; h  2 H.





	
	
	
	
	



	
	



We  must  show  that  their  product  is  also  in  H.   However,





	



	



g(h  1)  1  = gh





	



2





	



H.  Hence, H  is indeed a subgroup of G.  Conversely, if





	



	
	
	
	
	
	




 







g and h are in H, we want to show that gh 1 2 H. Since h is in H, its inverse h 1 must also be in H. Because of the closure of the group operation,











	



gh  1  2 H.





	



	



Exercises





	




 







1.  Find all x 2 Z satisfying each of the following equations.
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(a)  3x     2  (mod 7)





	



(d)  9x     3





	



(mod 5)





	



	



(b)  5x + 1





	



13





	



(mod 23)





	



(e)  5x     1





	



(mod 6)





	



	



(c)  5x + 1





	



13





	



(mod 26)





	



(f)  3x     1





	



(mod 6)





	




 







2. Which of the following multiplication tables de ned on the set G = fa; b; c; dg form a group? Support your answer in each case.











	
	
	



a





	



b





	



c





	



d





	
	
	



a





	



b





	



c





	



d





	



	
	



a





	



a





	



c





	



d





	



a





	
	



a





	



a





	



b





	



c





	



d





	



	



(a)





	



b





	



b





	



b





	



c





	



d





	



(c)





	



b





	



b





	



c





	



d





	



a





	



	
	



c





	



c





	



d





	



a





	



b





	
	



c





	



c





	



d





	



a





	



b





	



	
	



d





	



d





	



a





	



b





	



c





	
	



d





	



d





	



a





	



b





	



c





	



	
	
	



a





	



b





	



c





	



d





	
	
	



a





	



b





	



c





	



d





	



	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	



	
	



a





	



a





	



b





	



c





	



d





	
	



a





	



a





	



b





	



c





	



d





	



	



(b)





	



b





	



b





	



a





	



d





	



c





	



(d)





	



b





	



b





	



a





	



c





	



d





	



	
	



c





	



c





	



d





	



a





	



b





	
	



c





	



c





	



b





	



a





	



d





	



	
	



d





	



d





	



c





	



b





	



a





	
	



d





	



d





	



d





	



b





	



c





	



	
	
	
	
	
	
	
	
	
	
	
	
	




 







3. 	Write out Cayley tables for groups formed by the symmetries of a rectangle and for (Z4; +). How many elements are in each group? Are the groups the same? Why or why not? 








	


Describe the symmetries of a rhombus and prove that the set of symmetries forms a group. Give Cayley tables for both the symmetries of a rectangle and the symmetries of a rhombus. Are the symmetries of a rectangle and those of a rhombus the same? 











	


Describe the symmetries of a square and prove that the set of symmetries is a group. Give a Cayley table for the symmetries. How many ways can the vertices of a square be permuted? Is each permutation necessarily a 












symmetry of the square?  The symmetry group of the square is denoted by 





D4. 








	


Give a multiplication table for the group U(12). 











	


Let S = R n f 1g and de ne a binary operation on S by a b = a + b + ab. Prove that (S; ) is an abelian group. 











	


Give an example of two elements A and B in GL2(R) with AB 6= BA. 











	


Prove that the product of two matrices in SL2(R) has determinant one. 











	


Prove that the set of matrices of the form 




0	1




1   x   y




@0    1    zA




0    0    1
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is a group under matrix multiplication. This group, known as the Heisen-berg group, is important in quantum physics. Matrix multiplication in the Heisenberg group is de ned by











	



001





	



x1





	



yz





	



1 001





	



x10





	



yz00





	



1





	



=





	



001





	



x +1





	



x0





	



y +zy+0+z0xz01





	



:








	



@0





	



0





	



1





	



A @0





	



0





	



1





	



A





	
	



@0





	



0





	
	



1





	



A





	





	


Prove that det(AB) = det(A) det(B) in GL2(R). Use this result to show that the binary operation in the group GL2(R) is closed; that is, if A and B are in GL2(R), then AB 2 GL2(R). 











	


Let Zn2  = f(a1; a2; : : : ; an) : ai 2 Z2g.  De  ne a binary operation on Zn2  by 














	
	



(a1; a2; : : : ; an) + (b1; b2; : : : ; bn) = (a1 + b1; a2 + b2; : : : ; an + bn):








	
	



Prove that Zn2  is a group under this operation.  This group is important in








	
	



algebraic coding theory.








	



13.





	



Show that R  = R n f0g is a group under the operation of multiplication.








	



14.





	



Given the groups R  and Z, let G = R     Z.  De  ne a binary operation








	
	



on G by (a; m)    (b; n) = (ab; m + n).  Show that G is a group under this








	
	



operation.








	



15.





	



Prove or disprove that every group containing six elements is abelian.









 







16. 	Give a speci c example of some group G and elements g; h 2 G where (gh)n 6= gnhn. 








	


Give an example of three di erent groups with eight elements. Why are the groups di erent? 











	


Show that there are n! permutations of a set containing n items. 











	


Show that 












0 + a     a + 0     a   (mod n)









for all a 2 Zn.









20. 	Prove that there is a multiplicative identity for the integers modulo n: 








	


1     a   (mod n): 











	


For each a 2 Zn    nd a b 2 Zn  such that 












a + b     b + a     0   (mod n):









22. 	Show that addition and multiplication mod n are associative operations. 








	


Show that multiplication distributes over addition modulo n: 












a(b + c)     ab + ac   (mod n):
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24. 	Let a and b be elements in a group G.  Prove that abna  1  = (aba  1)n. 








	


Let U(n) be the group of units in Zn. If n > 2, prove that there is an element k 2 U(n) such that k2 = 1 and k 6= 1. 




26.  Prove that the inverse of g1g2       gn  is gn 1gn 11       g1 1.








27. Prove the remainder of Theorem  3.6: if G is a group and a; b 2 G, then the equation xa = b has unique solutions in G.








28. 	Prove Theorem  3.8. 







	


Prove the right and left cancellation laws for a group G; that is, show that in the group G, ba = ca implies b = c and ab = ac implies b = c for elements a; b; c 2 G. 




	


Show that if a2  = e for all a 2 G, then G must be an abelian group. 











	


Show that if G is a nite group of even order, then there is an a 2 G such that a is not the identity and a2 = e. 











	


Let G be a group and suppose that (ab)2 = a2b2 for all a and b in G. Prove that G is an abelian group. 












33. Find all the subgroups of Z3 Z3. Use this information to show that Z3 Z3 is not the same group as Z9. (See Example  14 for a short description of the product of groups.)








34. 	Find all the subgroups of the symmetry group of an equilateral triangle. 







	


Compute the subgroups of the symmetry group of a square. 











	


Let H = f2k : k 2 Zg.  Show that H is a subgroup of Q . 











	


Let n = 0; 1; 2; : : : and nZ = fnk : k 2 Zg. Prove that nZ is a subgroup of Z. Show that these subgroups are the only subgroups of Z. 




	


Let T = fz 2 C  : jzj = 1g.  Prove that T is a subgroup of C . 












39.  Let G consist of the 2    2 matrices of the form








cos sin sin cos








where    2 R.  Prove that G is a subgroup of SL2(R).








40.  Prove that








p








G = fa + b   2 : a; b 2 Q and a and b are not both zerog








is a subgroup of R  under the group operation of multiplication.
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41.





	



Let G be the group of 2    2 matrices under addition and





	



	
	



H =      ac   db   : a + d = 0   :





	




 







Prove that H is a subgroup of G.









42. Prove or disprove: SL2(Z), the set of 2 2 matrices with integer entries and determinant one, is a subgroup of SL2(R).









43. 	List the subgroups of the quaternion group, Q8. 








	


Prove that the intersection of two subgroups of a group G is also a subgroup of G. 











	


Prove or disprove: If H and K are subgroups of a group G, then H [ K is a subgroup of G. 











	


Prove or disprove: If H and K are subgroups of a group G, then HK = fhk : 











	


2 H and k 2 Kg is a subgroup of G.  What if G is abelian? 











	


Let G be a group and g 2 G.  Show that 











	


(G) = fx 2 G : gx = xg for all g 2 Gg 












is a subgroup of G.  This subgroup is called the center of G.









48. 	Let a and b be elements of a group G. If a4b = ba and a3 = e, prove that ab = ba. 








	


Give an example of an in nite group in which every nontrivial subgroup is in nite. 











	


Give an example of an in  nite group in which every proper subgroup is   nite. 











	


If xy = x  1y  1  for all x and y in G, prove that G must be abelian. 











	


If (xy)2  = xy for all x and y in G, prove that G must be abelian. 











	


Prove or disprove: Every nontrivial subgroup of an nonabelian group is non-abelian. 











	


Let H be a subgroup of G and 












N(H) = fg 2 G : gh = hg for all h 2 Hg:









Prove N(H) is a subgroup of G. This subgroup is called the normalizer of H in G.
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0





	



50000





	



30042





	



6









 



















Figure 3.3. A UPC code









Additional Exercises:  Detecting Errors









Credit card companies, banks, book publishers, and supermarkets all take advan-tage of the properties of integer arithmetic modulo n and group theory to obtain error detection schemes for the identi cation codes that they use.









1. 	UPC Symbols. Universal Product Code (UPC) symbols are now found on most products in grocery and retail stores. The UPC symbol is a 12-digit code identifying the manufacturer of a product and the product itself 









(Figure  3.3). The rst 11 digits contain information about the product; the twelfth digit is used for error detection. If d1d2 d12 is a valid UPC number, then 









3   d1 + 1   d2 + 3   d3 +      + 3   d11 + 1   d12      0   (mod 10):









(a) 	Show that the UPC number 0-50000-30042-6, which appears in Fig-ure  3.3, is a valid UPC number. 








	


Show that the number 0-50000-30043-6 is not a valid UPC number. 











	


Write a formula to calculate the check digit, d12, in the UPC number. 











	


The UPC error detection scheme can detect most transposition errors; that is, it can determine if two digits have been interchanged. Show that the transposition error 0-05000-30042-6 is detected. Find a trans-position error that is not detected. 











	


Write a program that will determine whether or not a UPC number is valid. 











	


It is often useful to use an inner product notation for this type of error detection scheme; hence, we will use the notion 












(d1; d2; : : : ; dk)   (w1; w2; : : : ; wk)     0   (mod n)
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to mean





	



	
	



d1w1 + d2w2 +      + dkwk      0





	



(mod n):








	
	



Suppose that (d1; d2; : : : ; dk)  (w1; w2; : : : ; wk)     0  (mod n) is an error detec-








	
	



tion scheme for the k-digit identi  cation number d1d2       dk, where 0     di <








	
	



n.  Prove that all single-digit errors are detected if and only if gcd(wi; n) = 1








	
	



for 1     i     k.





	



	



3.





	



Let  (d1; d2; : : : ; dk)   (w1; w2; : : : ; wk)       0  (mod n)  be  an  error  detection








	
	



scheme for the k-digit identi  cation number d1d2       dk, where 0     di  < n.








	
	



Prove that all transposition errors of two digits di





	



and dj  are detected if and








	
	



only if gcd(wi     wj; n) = 1 for i and j between 1 and k.









 







4. 	ISBN Codes. Every book has an International Standard Book Number (ISBN) code. This is a 10-digit code indicating the book's publisher and title. The tenth digit is a check digit satisfying 









(d1; d2; : : : ; d10)   (10; 9; : : : ; 1)     0   (mod 11):









One problem is that d10 might have to be a 10 to make the inner product zero; in this case, 11 digits would be needed to make this scheme work. Therefore, the character X is used for the eleventh digit. So ISBN 3-540-96035-X is a valid ISBN code.









(a) 	Is ISBN 0-534-91500-0 a valid ISBN code? What about ISBN 0-534-91700-0 and ISBN 0-534-19500-0? 








	


Does this method detect all single-digit errors? What about all trans-position errors? 











	


How many di  erent ISBN codes are there? 











	


Write a computer program that will calculate the check digit for the rst nine digits of an ISBN code. 











	


A publisher has houses in Germany and the United States. Its German pre x is 3-540. If its United States pre x will be 0-abc, nd abc such that the rest of the ISBN code will be the same for a book printed in Germany and in the United States. Under the ISBN coding method the rst digit identi es the language; German is 3 and English is 0. The next group of numbers identi es the publisher, and the last group identi es the speci c book. 
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Cyclic Groups





































The groups Z and Zn, which are among the most familiar and easily under-stood groups, are both examples of what are called cyclic groups. In this chapter we will study the properties of cyclic groups and cyclic subgroups, which play a fundamental part in the classi cation of all abelian groups.









4.1    Cyclic Subgroups









Often a subgroup will depend entirely on a single element of the group; that is, knowing that particular element will allow us to compute any other element in the subgroup.









Example 1. Suppose that we consider 3 2 Z and look at all multiples (both positive and negative) of 3. As a set, this is









3Z = f: : : ;   3; 0; 3; 6; : : :g:









It is easy to see that 3Z is a subgroup of the integers. This subgroup is completely determined by the element 3 since we can obtain all of the other elements of the group by taking multiples of 3. Every element in the subgroup is \generated" by 3.









Example 2. If H = f2n : n 2 Zg, then H is a subgroup of the multiplicative group of nonzero rational numbers, Q . If a = 2m and b = 2n are in H, then ab 1 = 2m2 n = 2m n is also in H. By Proposition  3.10, H is a subgroup of Q determined by the element 2.
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Theorem 4.1 Let G be a group and a be any element in G. Then the set hai = fak : k 2 Zg









is a subgroup of G. Furthermore, hai is the smallest subgroup of G that contains a.









Proof. The identity is in hai since a0 = e. If g and h are any two elements in hai, then by the de nition of hai we can write g = am and h = an for some integers m and n. So gh = aman = am+n is again in hai. Finally, if g = an in hai, then the inverse g 1 = a n is also in hai. Clearly, any subgroup H of G containing a must contain all the powers of a by closure; hence, H contains hai. Therefore, hai is the smallest subgroup of G containing a.









Remark. If we are using the \+" notation, as in the case of the integers under addition, we write hai = fna : n 2 Zg.









For a 2 G, we call hai the cyclic subgroup generated by a. If G contains some element a such that G = hai, then G is a cyclic group. In this case a is a generator of G. If a is an element of a group G, we de ne the order of a to be the smallest positive integer n such that an = e, and we write jaj = n. If there is no such integer n, we say that the order of a is in nite and write jaj = 1 to denote the order of a.









Example 3. Notice that a cyclic group can have more than a single gen-erator. Both 1 and 5 generate Z6; hence, Z6 is a cyclic group. Not every element in a cyclic group is necessarily a generator of the group. The order of 2 2 Z6 is 3. The cyclic subgroup generated by 2 is h2i = f0; 2; 4g.









The groups Z and Zn are cyclic groups. The elements 1 and 1 are generators for Z. We can certainly generate Zn with 1 although there may be other generators of Zn, as in the case of Z6.











	



Example 4.  The group of units, U(9), in Z9





	



is a cyclic group.  As a set,








	



U(9) is f1; 2; 4; 5; 7; 8g.  The element 2 is a generator for U(9) since








	



21





	



= 2





	



22





	



= 4





	



	



23





	



= 8





	



24





	



= 7





	



	



25





	



= 5





	



26





	



= 1:
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Example 5. Not every group is a cyclic group. Consider the symmetry group of an equilateral triangle S3. The multiplication table for this group is Table  3.2. The subgroups of S3 are shown in Figure  4.1. Notice that every subgroup is cyclic; however, no single element generates the entire group.













S3













fid;  1;  2g   fid;   1g     fid;   2g     fid;   3g













fidg













Figure 4.1. Subgroups of S3













Theorem 4.2  Every cyclic group is abelian.









Proof. Let G be a cyclic group and a 2 G be a generator for G. If g and h are in G, then they can be written as powers of a, say g = ar and h = as. Since







	
	



gh = aras = ar+s = as+r  = asar  = hg;








	



G is abelian.





	




 







Subgroups of Cyclic Groups









We can ask some interesting questions about cyclic subgroups of a group and subgroups of a cyclic group. If G is a group, which subgroups of G are cyclic? If G is a cyclic group, what type of subgroups does G possess?









Theorem 4.3  Every subgroup of a cyclic group is cyclic.









Proof. The main tools used in this proof are the division algorithm and the Principle of Well-Ordering. Let G be a cyclic group generated by a and suppose that H is a subgroup of G. If H = feg, then trivially H is cyclic. Suppose that H contains some other element g distinct from the identity. Then g can be written as an for some integer n. We can assume that n > 0.
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Let m be the smallest natural number such that am 2 H. Such an m exists by the Principle of Well-Ordering.









We claim that h = am is a generator for H. We must show that every h0 2 H can be written as a power of h. Since h0 2 H and H is a subgroup of G, h0 = ak for some positive integer k. Using the division algorithm, we can nd numbers q and r such that k = mq + r where 0 r < m; hence,









ak  = amq+r  = (am)qar  = hqar:









So ar = akh q. Since ak and h q are in H, ar must also be in H. However, m was the smallest positive number such that am was in H; consequently, r = 0 and so k = mq. Therefore,











	
	



h0 = ak  = amq  = hq








	



and H is generated by h.





	




 







Corollary 4.4  The subgroups of Z are exactly nZ for n = 0; 1; 2; : : :.









Proposition 4.5 Let G be a cyclic group of order n and suppose that a is a generator for G. Then ak = e if and only if n divides k.









Proof. First suppose that ak = e. By the division algorithm, k = nq + r where 0 r < n; hence,









e = ak  = anq+r  = anqar  = ear  = ar:









Since the smallest positive integer m such that am = e is n, r = 0. Conversely, if n divides k, then k = ns for some integer s. Consequently,









ak  = ans = (an)s = es = e:

















Theorem 4.6 Let G be a cyclic group of order n and suppose that a 2 G is a generator of the group. If b = ak, then the order of b is n=d, where d = gcd(k; n).









Proof. We wish to nd the smallest integer m such that e = bm = akm. By Proposition  4.5, this is the smallest integer m such that n divides km or, equivalently, n=d divides m(k=d). Since d is the greatest common divisor of n and k, n=d and k=d are relatively prime. Hence, for n=d to divide m(k=d) it must divide m. The smallest such m is n=d.
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Corollary 4.7 The generators of Zn are the integers r such that 1 r < n and gcd(r; n) = 1.













Example 6. Let us examine the group Z16. The numbers 1, 3, 5, 7, 9, 11, 13, and 15 are the elements of Z16 that are relatively prime to 16. Each of these elements generates Z16. For example,











	



1





	



9





	



= 9





	



2





	



9





	



= 2





	



3





	



9





	



= 11
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9





	



= 4





	



5





	



9





	



= 13





	



6





	



9





	



= 6








	



7





	



9





	



= 15





	



8





	



9





	



= 8





	



9





	



9





	



= 1
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9





	



= 10





	



11





	



9





	



= 3





	



12





	



9





	



= 12








	



13





	



9





	



= 5





	



14





	



9





	



= 14





	



15





	



9





	



= 7:








	
	
	
	
	
	
	
	
	




 











4.2    The Group C









The complex numbers are de  ned as









C = fa + bi : a; b 2 Rg;









where i2 = 1. If z = a + bi, then a is the real part of z and b is the imaginary part of z.









To add two complex numbers z = a + bi and w = c + di, we just add the corresponding real and imaginary parts:









z + w = (a + bi) + (c + di) = (a + c) + (b + d)i:









Remembering that i2 = 1, we multiply complex numbers just like polyno-mials. The product of z and w is









(a + bi)(c + di) = ac + bdi2 + adi + bci = (ac    bd) + (ad + bc)i:









Every nonzero complex number z = a + bi has a multiplicative inverse; that is, there exists a z 1 2 C such that zz 1 = z 1z = 1. If z = a + bi,





then









z 1 = a bi : a2 + b2
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The complex conjugate of a complex number z = a + bi is de ned to be p









z = a    bi.  The absolute value or modulus of z = a + bi is jzj =    a2 + b2.









Example 7. Let z = 2 + 3i and w = 1    2i.  Then









z + w = (2 + 3i) + (1    2i) = 3 + i









and









zw = (2 + 3i)(1    2i) = 8    i:









Also,











	
	



2





	



3





	



	



z  1  = 13     13i





	



	



jzj =





	



p





	
	



	
	



13





	
	



	



z = 2    3i:





	



	
	
	
	



	
	



y





	
	



	
	
	



z1  = 2 + 3i





	



	



z3  =    3 + 2i





	
	
	



	
	



0





	



x





	



	
	
	
	



	
	
	



z2  = 1    2i





	




 























Figure 4.2. Rectangular coordinates of a complex number









There are several ways of graphically representing complex numbers. We can represent a complex number z = a + bi as an ordered pair on the xy plane where a is the x (or real) coordinate and b is the y (or imaginary) coordinate. This is called the rectangular or Cartesian representation. The rectangular representations of z1 = 2+3i, z2 = 1 2i, and z3 = 3+2i are depicted in Figure  4.2.









Nonzero complex numbers can also be represented using polar coordi-nates. To specify any nonzero point on the plane, it su ces to give an angle








 











4.2   THE GROUP C	63









y









a + bi









r















	



0





	



x





	



	
	
	




 



































Figure 4.3. Polar coordinates of a complex number













from the positive x axis in the counterclockwise direction and a distance r from the origin, as in Figure  4.3. We can see that









z = a + bi = r(cos   + i sin  ):









Hence,





p





r = jzj =    a2 + b2









and









a = r cos









b = r sin  :









We sometimes abbreviate r(cos + i sin ) as r cis . To assure that the representation of z is well-de ned, we also require that 0 < 360 . If the measurement is in radians, then 0 < 2 .











	



Example 8. Suppose that z = 2 cis 60  .  Then





	



	



a = 2 cos 60  = 1





	



	



and





	



	



b = 2 sin 60  = p3:





	



p








	



Hence, the rectangular representation is z = 1 +





	



3 i.
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Conversely,  if  we  are  given  a  rectangular  representation  of  a  complex







	



number,  it  is  often  useful  to  know  the  number's  polar  representation.





	



If





	



	
	



p





	



2    3





	



p





	
	
	



	



z = 3





	
	



2 i, then





	
	
	



	



and





	
	
	
	



r = pa2 + b2  = p





	



36 = 6





	
	



	
	
	
	
	



= arctan    ab    = arctan(   1) = 315  ;





	
	



	
	
	
	
	
	
	



	
	



p





	
	



p





	
	
	



	



so 3





	



2





	
	



3





	



2 i = 6 cis 315  .





	
	
	



	
	
	
	
	
	
	
	




 







The polar representation of a complex number makes it easy to nd prod-ucts and powers of complex numbers. The proof of the following proposition is straightforward and is left as an exercise.









Proposition 4.8 Let z = r cis and w = s cis be two nonzero complex numbers. Then









zw = rs cis(   +   ):













Example 9. If z = 3 cis( =3) and w = 2 cis( =6), then zw = 6 cis( =2) = 6i.

















Theorem 4.9 (DeMoivre)  Let z = r cis    be a nonzero complex number.









Then





[r cis  ]n = rn cis(n  )









for n = 1; 2; : : :.









Proof.









Assume





zn+1









We will use induction on n. For n = 1 the theorem is trivial. that the theorem is true for all k such that 1 k n. Then









= znz




	


rn(cos n  + i sin n  )r(cos   + i sin  ) 











	


rn+1[(cos n  cos       sin n  sin  ) + i(sin n  cos   + cos n  sin  )] 











	


rn+1[cos(n  +   ) + i sin(n  +   )] 




	


rn+1[cos(n + 1)   + i sin(n + 1)  ]: 
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Example 10. Suppose that z = 1 + i and we wish to compute z10. Rather than computing (1 + i)10 directly, it is much easier to switch to polar coor-dinates and calculate z10 using DeMoivre's Theorem:









z10  = (1 + i)10





p	10





=      2 cis   4









= (p2 )10 cis 5 2









= 32 cis 2 = 32i:





















The Circle Group and the Roots of Unity









The multiplicative group of the complex numbers, C , possesses some in-teresting subgroups. Whereas Q and R have no interesting subgroups of nite order, C has many. We rst consider the circle group,









T = fz 2 C : jzj = 1g:









The following proposition is a direct result of Proposition  4.8.









Proposition 4.10  The circle group is a subgroup of C .









Although the circle group has in nite order, it has many interesting nite subgroups. Suppose that H = f1; 1; i; ig. Then H is a subgroup of the circle group. Also, 1, 1, i, and i are exactly those complex numbers that satisfy the equation z4 = 1. The complex numbers satisfying the equation zn = 1 are called the nth roots of unity.









Theorem 4.11  If zn = 1, then the nth roots of unity are









z = cis 2k ; n









where k = 0; 1; : : : ; n 1. Furthermore, the nth roots of unity form a cyclic subgroup of T of order n.
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