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THE SECOND LAW OF THERMODYNAMICS








 



PART 1 - THE SECOND LAW OF THERMODYNAMICS









1.A. Background to the Second Law of Thermodynamics





[IAW 23-31 (see IAW for detailed VWB&S references); VN Chapters 2, 3, 4]









1.A.1 Some Properties of Engineering Cycles; Work and Efficiency





As motivation for the development of the second law, we examine two types of processes that concern interactions between heat and work. The first of these represents the conversion of work into heat. The second, which is much more useful, concerns the conversion of heat into work. The question we will pose is how efficient can this conversion be in the two cases.
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Figure A-1: Examples of the conversion of work into heat









Three examples of the first process are given above. The first is the pulling of a block on a rough horizontal surface by a force which moves through some distance. Friction resists the pulling. After the force has moved through the distance, it is removed. The block then has no kinetic energy and the same potential energy it had when the force started to act. If we measured the temperature of the block and the surface we would find that it was higher than when we started. (High temperatures can be reached if the velocities of pulling are high; this is the basis of inertia welding.) The work done to move the block has been converted totally to heat.









The second example concerns the stirring of a viscous liquid. There is work associated with the torque exerted on the shaft turning through an angle. When the stirring stops, the fluid comes to rest and there is (again) no change in kinetic or potential energy from the initial state. The fluid and the paddle wheels will be found to be hotter than when we started, however.









The final example is the passage of a current through a resistance. This is a case of electrical work being converted to heat, indeed it models operation of an electrical heater.









All the examples in Figure A-1 have 100% conversion of work into heat. This 100% conversion could go on without limit as long as work were supplied. Is this true for the conversion of heat into work?









To answer the last question, we need to have some basis for judging whether work is done in a given process. One way to do this is to ask whether we can construct a way that the process could result in the raising of a weight in a gravitational field. If so, we can say “Work has been done”. It may sometimes be difficult to make the link between a complicated thermodynamic process and the simple raising of a weight, but this is a rigorous test for the existence of work.









One example of a process in which heat is converted to work is the isothermal (constant temperature) expansion of an ideal gas, as sketched in the figure. The system is the gas inside the chamber. As the gas expands, the piston does work on some external device. For an ideal gas, the internal energy is a function of temperature only, so that if the temperature is constant for some process the internal energy change is zero. To keep the temperature constant during the expansion,
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heat must be supplied. Because ∆U = 0, the first law takes the form Q=W. This is a process that has 100% conversion of heat into work.









The work exerted by the system is given by
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Work = ∫ PdV
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where 2 and 1 denote the two states at the beginning and end of the process. The equation of state for an ideal gas is









P = NRT/V,
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with N the number of moles of the gas contained in the chamber. Using the equation of state, the expression for work can be written as
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Work during an isothermal expansion = NRT ∫ dV /V
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(A.1.1)
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For an isothermal process, PV = constant, so that P1 / P2 = V2 /V1. The work can be written in terms of the pressures at the beginning and end as
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The lowest pressure to which we can expand and still receive work from the system is atmospheric pressure. Below this, we would have to do work on the system to pull the piston out further. There is thus a bound on the amount of work that can be obtained in the isothermal expansion; we cannot continue indefinitely. For a power or propulsion system, however, we would like a source of continuous power, in other words a device that would give power or propulsion as long as fuel was added to it. To do this, we need a series of processes where the system does not progress through a one-way transition from an initial state to a different final state, but rather cycles back to the initial state. What is looked for is in fact a thermodynamic cycle for the system.









We define several quantities for a cycle:





QA is the heat absorbed by the system QR is the heat rejected by the system W is the net work done by the system.









The cycle returns to its initial state, so the overall energy change, ∆U , is zero. The net work done by the system is related to the magnitudes of the heat absorbed and the heat rejected by









W =  Net work  = QA − QR .









The thermal efficiency of the cycle is the ratio of the work done to the heat absorbed. (Efficiencies are often usefully portrayed as “What you get” versus “What you pay for”. Here what we get is work and what we pay for is heat, or rather the fuel that generates the heat.) In terms of the heat absorbed and rejected, the thermal efficiency is:
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The thermal efficiency can only be 100% (complete conversion of heat into work) if QR = 0, and a basic question is what is the maximum thermal efficiency for any arbitrary cycle? We examine this for two cases, the Carnot cycle and the Brayton (or Joule) cycle which is a model for the power cycle in a jet engine.









1.A.2 Carnot Cycles





A Carnot cycle is shown below. It has four processes. There are two adiabatic reversible legs and two isothermal reversible legs. We can construct a Carnot cycle with many different systems, but the concepts can be shown using a familiar working fluid, the ideal gas. The system can be regarded as a chamber filled with this ideal gas and with a piston.









a



















	



Q2





	
	



1





	
	



2





	



4





	



	
	
	
	
	
	
	



	
	
	
	
	
	
	



	
	
	
	
	
	
	



	



P





	



b





	
	
	
	
	



	
	
	
	
	
	
	



	



d





	
	



T2





	



Q2





	
	
	



	



Q1





	



T2





	
	
	
	
	



	
	
	



Reservoir





	



Insulating stand





	



	
	



c  T1





	
	
	



	
	



V





	
	
	
	
	




 






 







	
	



3








	



T1





	



Q1








	



Reservoir









 







Figure A-2: Carnot cycle – thermodynamic diagram on left and schematic of the different stages in the cycle for a system composed of an ideal gas on the right









The four processes in the Carnot cycle are:




	


The system is at temperature T2 at state (a). It is brought in contact with a heat reservoir, which is just a liquid or solid mass of large enough extent such that its temperature does not change appreciably when some amount of heat is transferred to the system. In other words, the heat reservoir is a constant temperature source (or receiver) of heat. The system then undergoes an isothermal expansion from a to b, with heat absorbed Q2 . 











	


At state b, the system is thermally insulated (removed from contact with the heat reservoir) and then let expand to c. During this expansion the temperature decreases to T1. The heat exchanged during this part of the cycle, Qbc = 0. 











	


At state c the system is brought in contact with a heat reservoir at temperature T1. It is then compressed to state d, rejecting heat Q1 in the process. 











	


Finally, the system is compressed adiabatically back to the initial state a.  The heat exchange 








Qda  = 0 . 









The thermal efficiency of the cycle is given by the definition
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In this equation, there is a sign convention implied. The quantities QA ,QR as defined are the magnitudes of the heat absorbed and rejected. The quantities Q1 ,Q2 on the other hand are defined with reference to heat received by the system. In this example, the former is negative and the latter is positive. The heat absorbed and rejected by the system takes place during isothermal processes and we already know what their values are from Eq. (A.1.1):
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Q2  = Wab  = NRT2 [ ln( Vb /Va )]





	



	



Q1 = Wcd  = NRT1 [ ln( Vd /Vc )] = - [ ln( Vc /Vd )].





	



( Q1  is negative.)









 







The efficiency can now be written in terms of the volumes at the different states as:
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The path from states b to c and from a to d are both adiabatic and reversible. For a reversible adiabatic process we know that PVγ = constant. Using the ideal gas equation of state, we have TVγ −1= constant. Along curve b-c, therefore T2Vbγ −1 = T1Vcγ −1 . Along the curve d-a,





T2Vaγ −1 = T1Vdγ −1 .
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= Va  , or V  /V  = V  /V .
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Comparing the expression for thermal efficiency Eq. (A.2.1) with Eq. (A.2.2) shows two consequences. First, the heats received and rejected are related to the temperatures of the isothermal parts of the cycle by
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Second, the efficiency of a Carnot cycle is given compactly by
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The efficiency can be 100% only if the temperature at which the heat is rejected is zero. The heat and work transfers to and from the system are shown schematically in Figure A-3.
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Figure A-3: Work and heat transfers in a Carnot cycle between two heat reservoirs
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isotherms are, the greater efficiency? And that if they were very close, it would be very inefficient? (MP 1A.1)









In the Carnot cycle, why are we only dealing with volume changes and not pressure changes on the adiabats and isotherms? (MP 1A.2)









Is there a physical application for the Carnot cycle? Can we design a Carnot engine for a propulsion device? (MP 1A.3)









How do we know which cycles to use as models for real processes? (MP 1A.4)













1.A.3 Brayton Cycles (or Joule Cycles): The Power Cycle for a Gas Turbine Jet Engine





For a Brayton cycle there are two adiabatic legs and two constant pressure legs. Sketches of an engine and the corresponding cycle are given in Figure A-4.
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Figure A-4: Sketch of the jet engine components and corresponding thermodynamic states













Gas turbines are also used for power generation and for closed cycle operation (for example for space power generation). A depiction of the cycle in this case is shown in Figure A-5.
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Figure A-5: Thermodynamic model of gas turbine engine cycle for power generation













The objective now is to find the work done, the heat absorbed, and the thermal efficiency of the cycle. Tracing the path shown around the cycle from a-b-c-d and back to a, the first law gives (writing the equation in terms of a unit mass),









∆u a− b − c − d −a  = 0 = q 2 + q1 − w.





The net work done is





w = q 2  + q1,





where q1 ,q2 are defined as heat received by the system ( q1 is negative). We thus need to evaluate the heat transferred in processes b-c and d-a.









For a constant pressure process the heat exchange per unit mass is dh = c pdT = dq, or [ dq]cons tant P = dh.









The heat exchange can be expressed in terms of enthalpy differences between the relevant states. Treating the working fluid as an ideal gas, for the heat addition from the combustor,









q 2  = hc  − hb  = c p ( Tc  − Tb ).









The heat rejected is, similarly, q1 = ha − hd = c p ( Ta − Td ). The net work per unit mass is given by









Net work per unit mass = q1 + q 2  = c p [( Tc  − Tb )+ ( Ta  − Td )].









The thermal efficiency of the Brayton cycle can now be expressed in terms of the temperatures:
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η = Net work = c p [( Tc  − Tb )− (Td  − Ta )]
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To proceed further, we need to examine the relationships between the different temperatures. We know that points a and d are on a constant pressure process as are points b and c,







	



and Pa  = Pd ;





	



Pb  = Pc .  The other two legs of the cycle are adiabatic and reversible, so
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efficiency, Eq. (A.1.3) yields an expression for the thermal efficiency of a Brayton cycle:







	
	



T





	
	



	



Ideal Brayton cycle efficiency:ηB  = 1−





	



a





	
	



(A.3.2)





	



	
	



Tb





	
	



	
	
	
	



	



= 1−





	



Tatmospheric





	



.





	



	
	



Tcompressor exit





	
	




 



The temperature ratio across the compressor, Tb /Ta  = TR .  In terms of compressor temperature





ratio, and using the relation for an adiabatic reversible process we can write the efficiency in terms of the compressor (and cycle) pressure ratio, which is the parameter commonly used:
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Figure A-6 shows pressures and temperatures through a gas turbine engine (the afterburning J57, which powers the F-8 and the F-101).





















































































Figure A-6: Gas turbine engine pressures and temperatures
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Equation (A.3.3) says that for a high cycle efficiency, the pressure ratio of the cycle should be increased. Figure A-7 shows the history of aircraft engine pressure ratio versus entry into service, and it can be seen that there has been a large increase in cycle pressure ratio. The thermodynamic concepts apply to the behavior of real aerospace devices!
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Figure A-7: Gas turbine engine pressure ratio trends (Jane’s Aeroengines, 1998)









Muddy points









When flow is accelerated in a nozzle, doesn’t that reduce the internal energy of the flow and therefore the enthalpy? (MP 1A.5)









Why do we say the combustion in a gas turbine engine is constant pressure? (MP 1A.6) Why is the Brayton cycle less efficient than the Carnot cycle? (MP 1A.7)









If the gas undergoes constant pressure cooling in the exhaust outside the engine, is that still within the system boundary ? (MP 1A.8)









Does it matter what labels we put on the corners of the cycle or not? (MP 1A.9)









Is the work done in the compressor always equal to the work done in the turbine plus work out (for a Brayton cyle) ? (MP 1A.10)













1.A.4 Gas Turbine Technology and Thermodynamics





The turbine entry temperature, Tc , is fixed by materials technology and cost.  (If the temperature is





too high, the blades fail.) Figures A-8 and A-9 show the progression of the turbine entry temperatures in aeroengines. Figure A-8 is from Rolls Royce and Figure A-9 is from Pratt&Whitney. Note the relation between the gas temperature coming into the turbine blades and the blade melting temperature.
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Figure A-8: Rolls-Royce high temperature technology













































































Figure A-9: Turbine blade cooling technology [Pratt & Whitney]













For a given level of turbine technology (in other words given maximum temperature) a design question is what should the compressor TR be? What criterion should be used to decide this? Maximum thermal efficiency? Maximum work? We examine this issue below.
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Figure A-10: Efficiency and work of two Brayton cycle engines









The problem is posed in Figure A-10, which shows two Brayton cycles. For maximum efficiency we would like TR as high as possible. This means that the compressor exit temperature approaches the turbine entry temperature. The net work will be less than the heat received; as Tb → Tc the heat received approaches zero and so does the net work.









The net work in the cycle can also be expressed as ∫ Pdv, evaluated in traversing the cycle. This is the area enclosed by the curves, which is seen to approach zero as Tb → Tc .
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The conclusion from either of these arguments is that a cycle designed for maximum thermal efficiency is not very useful in that the work (power) we get out of it is zero.









A more useful criterion is that of maximum work per unit mass (maximum power per unit mass flow). This leads to compact propulsion devices. The work per unit mass is given by:









Work /unit mass = c p [( Tc  − Tb )− ( Td  − Ta )]
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(Design constraint)









The design variable is the compressor exit temperature, Tb , and to find the maximum as this is varied, we differentiate the expression for work with respect to Tb :
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The first and the fourth term on the right hand side of the above equation are both zero (the turbine entry temperature is fixed, as is the atmospheric temperature). The maximum work occurs where







	



the derivative of work with respect to Tb
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To use Eq. (A.4.1), we need to relate T
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Plugging this expression for the derivative into Eq. (A.4.1) gives the compressor exit temperature







	



for maximum work as Tb  =





	



Ta Tc  .  In terms of temperature ratio,
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Compressor temperature ratio for maximum work:
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The condition for maximum work in a Brayton cycle is different than that for maximum efficiency. The role of the temperature ratio can be seen if we examine the work per unit mass which is delivered at this condition:
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Ratioing all temperatures to the engine inlet temperature,
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To find the power the engine can produce, we need to multiply the work per unit mass by the mass flow rate:
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;  Maximum power for an ideal Brayton cycle
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a) Gas turbine engine core	b) Core power vs. turbine entry temperature









Figure A-11: Aeroengine core power [Koff/Meese, 1995]









Figure A-11 shows the expression for power of an ideal cycle compared with data from actual jet engines. Figure 11a shows the gas turbine engine layout including the core (compressor, burner, and turbine). Figure 11b shows the core power for a number of different engines as a function of the turbine rotor entry temperature. The equation in the figure for horsepower (HP) is the same as that we just derived, except for the conversion factors. The analysis not only shows the qualitative trend very well but captures much of the quantitative behavior too.









A final comment (for now) on Brayton cycles concerns the value of the thermal efficiency. The Brayton cycle thermal efficiency contains the ratio of the compressor exit temperature to atmospheric temperature, so that the ratio is not based on the highest temperature in the cycle, as the Carnot efficiency is. For a given maximum cycle temperature, the Brayton cycle is therefore less efficient than a Carnot cycle.









Muddy points











What are the units of w in  power = mw ? (MP 1A.11)









Precision about the assumptions made in the Brayton cycle for maximum efficiency and maximum work (MP 1A.12)









You said that for a gas turbine engine modeled as a Brayton cycle the work done is w=q1 +q2 , where q2 is the heat added and q1 is the heat rejected. Does this suggest that the work that you get out of the engine doesn't depend on how good your compressor and turbine are?…since the compression and expansion were modeled as adiabatic. (MP 1A.13)









1.A.5 Refrigerators and Heat Pumps









The Carnot cycle has been used for power, but we can also run it in reverse. If so, there is now net work into the system and net heat out of the system. There will be a quantity of heatQ2 rejected at the higher temperature and a quantity of heat Q1 absorbed at the lower temperature. The former of
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these is negative according to our convention and the latter is positive. The result is that work is done on the system, heat is extracted from a low temperature source and rejected to a high temperature source. The words “low” and “high” are relative and the low temperature source might be a crowded classroom on a hot day, with the heat extraction being used to cool the room. The cycle and the heat and work transfers are indicated in Figure A-12. In this mode of operation
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Figure A-12: Operation of a Carnot refrigerator





	
	
	
	
	




 







the cycle works as a refrigerator or heat pump. “What we pay for” is the work, and “what we get” is the amount of heat extracted. A metric for devices of this type is the coefficient of performance, defined as
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For a Carnot cycle we know the ratios of heat in to heat out when the cycle is run forward and, since the cycle is reversible, these ratios are the same when the cycle is run in reverse. The coefficient of performance is thus given in terms of the absolute temperatures as
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This can be much larger than unity.
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The Carnot cycles that have been drawn are based on ideal gas behavior. For different working media, however, they will look different. We will see an example when we discuss two-phase situations. What is the same whatever the medium is the efficiency for all Carnot cycles operating between the same two temperatures.









Muddy points









Would it be practical to run a Brayton cycle in reverse and use it as rerigerator? (MP 1A.14)









1.A.6 Reversibility and Irreversibility in Natural Processes









We wish to characterize the “direction” of natural processes; there is a basic “directionality” in nature. We start by examining a flywheel in a fluid filled insulated enclosure as shown in Figure A-13.
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